

the newAudio Frequency Equalizer

guaranteed to improve any stereo system and guaranteed to improve any listening area environment!

ROOM EQUALIZATION, SPECIAL EFFECTS, PLAYBACK and RECORDING

EQUALIZING FOR ROOM CHANGES: For example, here are some factors that would call for definite changes in your Equalizer settings: (1) Draperies open or closed. (2) Sliding glass door open or closed. (3) Room full of people. (4) Seating arrangements changed. (5) Major changes in furniture arrangement. (6) Relocation of speakers.... EQUALIZATION OF RECORDS: You can compensate for old 78 record deficiencies (surface noise, absence of highs or lows, etc.) or favorite recordings that have never sounded quite the way you felt they should sound. ... COMPENSATING FOR RADIO STATIONS: Some stations are noted for excesses in either low or high frequencies. Make out a Computone Chart for each of your favorite stations so that you can easily achieve the ideal tonal response each time you change stations. ... EOUALIZING TAPES: Compensating for pre-recorded, or home-recorded, tapes that are under or overemphasized in certain frequency areas. ... CHANGING OVERALL BALANCE: You can make up for many deficiencies in recordings to more
accurately duplicate the sounds of the original performance, or shape each curve to your own listening interests to greatly enhance your enjoyment of your recordings. ... SPECIAL EFFECTS: You can boost or cut the loudness of a specific instrument or groups of instruments to obtain more pleasing instrumental balance or to add presence to a solo... IMPROVING RECOROING OF TAPES: Use the Equalizer for tape dubbing, to create a near-perfect tape out of one that may have serious deficiencies. (Make your own corrected recording of records, station programming, or other tapes, and no further adjustment of the Equalizer will be needed for playback.) (See Operating Instructions).

COMPUTONE CHARTS: After you have achieved the equalization of sound that you prefer use the Computone Charts, supplied with each Equalizer, to mark the settings, so that you can duplicate the settings easily.

SPECIFICATIONS and SPECIAL FEA TURES

TOROIDAL and ferrite-core inductors, ten octave-bands per channel.
FREQUENCY response: $\pm 1 / 2 \mathrm{db}$ from $20-20,480 \mathrm{~Hz}$ at zero setting.
HARMONIC DISTORTION: Less than. 1% THD @ $2 v ., T y p: .05 \%$ @ $1 v$
SIGNAL-TO-NOISERATIO: Better than 90 db @ $2 v$. input.
INPUT IMPEDANCE: Operable from any source IOOK ohms or less OUTPUT IMPEDANCE: Operable into $3 K$ ohms or or greater -
CIRCUIT BOARDS: Military Hi-Fi Amp. Receiver or Tape Recorder.) CIRCUIT BOARDS: Military grade G-10 glass epoxy.
RESISTORS: Low-noise setected carbon-film.

RANGE: 12 db boost and 12 db cut, each octave.
MASTER OUTPUT LEVEL: "Frequency-spectrum-level" controls for left and right channels, continuously variable 18 db range, for unity gain
compensation from minus 12 db to plus 6 db .
MAXIMUM OUTPUT SIGNAL: variable Master "frequency spectrum level" Controls allow adjustment of optimum output voltage for each channel, to exactly match amplifier capability. up to 7 v .
SIZE: designed to coordinate with receivers, comes installed in handsome walnut-grained wood receiver-size case, $51 / 4^{\prime \prime} \times 18^{\circ} \times 11^{\prime \prime}$, or rack-mount WARRANTY: 2-year parts and labor

Send for FREE BOOKLET: "Why's and How's of Equalization" Plus list of Franchised Dealers to Sole UK Distributor:
Soundcraftsmen Dept SW12
Gale Electronics \& Design Limited 39 Upper Brook Street London W1Y 1PE

LOW COST RC OSCILLATORS

PORTABLE INSTRUMENTS

ANALOGUE

FREQUENCY ACCURACY

SINE OUTPUT ' DISTORTION SQUARE OUTPUT SYNC. OUTPUT METER SCALES SIZE \& WEIGHT TG152D Without
meter. $\mathbf{4 6}$ FREQUENCY

SINE QUTPUT DISTORTION

SQUARE OUTPUT
SYNC. OUTPUT
SYNC. INPUT
METER SCALES
SIZE \& WEIGHT

3 Hz to 300 kHz in 5 ranges. $\pm 2 \% \pm 0.1 \mathrm{~Hz}$ up to 100 kHz , increasing to $\pm 3 \%$ at 300 kHz .
2.5 V r.m.s. down to $<200 \mu \mathrm{~V}$.
$<0.2 \%$ from 50 Hz to 50 kHz .
2.5 V peak down to $<200 \mu \mathrm{~V}$.
2.5 V r.m.s. sine.
$0 / 2.5 \mathrm{~V}$ \& $-10 /+10 \mathrm{~dB}$ on TG152DM.
$7^{\prime \prime}$ high $\times 10 \frac{1}{4}{ }^{\prime \prime}$ wide $\times 5 \frac{1}{2}$ " deep. 8 lbs .
TG152DM
$\underset{\text { water }}{\text { mater }} £ 556$
1 Hz to 1 MHz in 12 ranges. Acc. $\pm 2 \%$ $\pm 0.03 \mathrm{~Hz}$.
7 V r.m.s. down to $<200 \mu \mathrm{~V}$ with Rs $=600 \Omega$
$<0.1 \%$ to $5 \mathrm{~V},<0.2 \%$ at 7 V from 10 Hz to 100 kHz .
$7 V$ peak down to $<200 \mu \mathrm{~V}$. Rise time $<150 \mathrm{nS}$.
$>1 \mathrm{~V}$ r.m.s. sine in phase with output. $\pm 1 \%$ freq. lock range per volt r.m.s. $0 / 2 \mathrm{~V}, 0 / 7 \mathrm{~V}$ \& $-14 /+6 \mathrm{dBm}$. on TG200M \& DM only.
7 "high $\times 10 \frac{1}{4}$ " $\times 5 \frac{1}{2}$ " deep. 10 lbs .

TG200 TG200D TG200M TG200DM Sine O/P Sine \& Sq. O/P. Sine O/P Sine \& Sq.O/P £55 £58 + meter. f65
f 68

FREQUENCY ACCURACY

SINE OUTPUT DISTORTION

METER SCALES SIZE \& WEIGHT

TG66B
Battery
model.
0.2 Hz to 1.22 MHz on four decade controls.
$\pm 0.02 \mathrm{~Hz}$ below 6 Hz
$\pm 0.3 \%$ from 6 Hz to 100 kHz
$\pm 1 \%$ from 100 kHz to 300 kHz $\pm 3 \%$ above 300 kHz .
5 V r.m.s. down to $30 \mu \mathrm{~V}$ with $\mathrm{R} s=600 \Omega$ $<0.15 \%$ from 15 Hz to 15 kHz . $<0.5 \%$ at 1.5 Hz and 150 kHz . 2 Expanded voltage \& $-2 /+4 \mathrm{dBm}$. 7 " high $\times 10 \frac{1}{4}$ " wide $\times 7$ " deep. 12 lbs .

TG66A

Mains \&
battery model. f 170

[^0]
After we've introduced our new models, well let them speak for themselves.

On the left, our new portable dual-trace oscilloscope, the SO-4510. On the right, our new function generator, the SG-1271.

Both are in our assembled instrument catalogue, although soon they'll also be available in kit form.

And, coming from Heathkit, the world's largest makers of electronic kits, they have a lot of advantages.

Every component, for instance, has to be a lot more rugged and reliable than the components in run of the mill equipment.

With the result that Heathkit equipment is of very high quality. And being specifically designed to permit easy servicing, makes a very good investment.

For full details just post the coupon and we'll send you your free Heathkit catalogues. Or call in at the London Heathkit Centre, 233 Tottenham Court Road, or at our showroom in Bristol Road, Gloucester.

Meanwhile we'll just let the facts speak for themselves.

Heath (Gloucester) Limited, DeptWW124, Bristol Road, Gloucester, GL2 6EE. Tel: (0452) 29451.

SO-4510

DC- 15 MHz bandwidth.
Dualtrace
$1 \mathrm{mV} / \mathrm{cm}$ input sensitivity.
All major circuitry on five removable circuit boards for easy servicing.
Time base sweep to $100 \mathrm{~ns} / \mathrm{cm}$.
Vertical delay lines provide at least 20 ns of pretriggered waveform for complete signal display.

SG-1271

Frequency range of 0.1 Hz to 1 MHz . Sine, square or triangle waveforms. Calibrated attenuation from 0 to 50 dB in 10 dB steps. Output 10 volts peak to peak.
Frequency accuracy of $\pm 3 \%$ of full scale on dial.

anders menns meters...

PRESTIGE RANGE

- High accuracy and stability

- Clear Sperry Display

- Automatic zero-ing
- High noise rejection (78 db CMR)
- Extremely versatile

Competitive prices.

Anders provide what is probably the largest range of meters available from a single source in Europe: MC/MI, dynamometer, vibrating reed, electrostatic, etc. in over 100 case styles and sizes, a few of which are shown below.

Popular models and ranges are stocked in depth while a specially equipped instrument department enables swift production of non-standard ranges and scales, to suit individual customer requirements, in large or small quantities.

Recorders 60 or 120 mm . charts. Non-ink marking. DC moving coil and AC rectified.
 rectified.

Kestrel Clear Front. 7 models, $1.3^{\prime \prime}-5 \cdot 25^{\prime \prime}$ scales. DC moving coil, $A C$ moving coil rectified, $A C$ moving iron.

Lancaster Long Scale $240^{\circ} .2$ models, $4^{\prime \prime}, 5 \cdot 5^{\prime \prime}$ scales. DC moving coil and $A C$ moving coil rectified.

[^1]
British colour tv Mullard quality

The standards of pefformance and reliability demanded of today's colour television sets mean that component quality-even of low cost devices produced in millions-must be of the highest order. An average colour set incorporates well over 700 individual electronic devices, and if it is to achieve its reliability target the failure rate of its components must be equivalent to only one fault in six

standards go on getting higher. helps keep up the good work...

million component hours.
Unreliable products mean more servicing, more replacements, more guarantee claims . . . dissatisfied customers . . . so you won't save ony money by leaving component quality to chance. Unknown components mean that your goods inward testing has to be much more stringent too.

Remember that quality can't be 'tested into' a component after it's been made. It's a function of every step from initial design and raw
material specification right through each production process to the finished product.

We have developed a series of quality assurance criteria which are applied throughout the Mullard organisation wherever actions or decisions can affect quality, however indirectly.

- Quality targets are clearly defined for all components.
- Test specifications cover all approved applications.
- Procurement specifications define
essentiol quality requirements for outside suppliers.
- Manufacturing specifications are precise on all factors affecting quality.
- Accelerated test procedures are continually re-evaluated and stringent control is exercised on early life failures.
- Regular quality cost analysis is used to show whether costs incurred are to the best advantoge of the user. Mullard has an unrivalled name far the quality and reliability of the components it produces. We intend to keep it that way.

Mullard

New Course in Digital Désign"

Understand the latest

 developments in calculators, computers, watches, telephones, television, automotive instrumentation....Each of the 6 volumes of this self-instruction course measures $113 / 4^{\prime \prime} \times 81 / 4^{\prime \prime}$ and contains 60 pages packed with information, diagrams and questions designed to lead you step-by-step through number systems and Boolean algebra, to memories, counters and simple arithmetic circuits, and on to a complete understanding of the design and operation of calculators and computers.

After completing this course you will have broadened your career prospects and considerably increased your fundamental understanding of the changing technological worid around you.

Design of Digital Systems contains over twice as much information in each volume as the simpler course, Digital Computer Logic and Electronics. All the information in the simpler course is covered as part of the first volumes of Design of Digital Systems which, as you can see from its contents, also covers many more advanced topics.

Designer Manager

Enthusiast
Scientist
Engineer
Student

These courses were written so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of being quicker and more thorough than classroom learning. You work at your own speed and must respond by answering questions on each new piece of information before proceeding to the next.

Guarantee-no risk to you

If you are not entirely satisfied with Design of Digital Systems or Digital Computer Logic and Electronics, you may return them to us and your money will be refunded in full, no questions asked.

Design of Digital Systems

A Solf-Instruction Course in 6 Volumes

1 ComputerArithmetic

 3 Boolean Logic 3 Arithmetic Circuits 4 Memories \& Counters 5 Calculator Design - Computer Architecture
Design of

Digital Systems
Book 1 .

NEW TUAC POWER MODULES
offering more power and quality than ever before

* 30 watts RMS continuous sine wave output $\star 2$ R.C.A. 40 watt output transistors

TL60

$5 \times 5 \times 3 \mathrm{in}$.
t 60 watts RMS
continuous sine
wave output

- 2 R.C.A. 150 watt 15 amp transistors

TL100
f11-50

* 100 watts R.M.S. contínuous sine wave out-
put
2 R.C.A. 150
50
f13-20 transistors
* Rugged layer wound driver transformer * Shor-Open-and Thermal overioad protection
\star Only 8 connections

Specification on all power modules: All output power ratings $\pm 1 \mathrm{~dB}$: Output impedance $8-15$
ohms: THD at full power 2% typically 1%. Input sensitivity 60 mV into 10 kQ ; Frequency response $20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 2 \mathrm{~dB}$: Hum and noise better than -70 dB .

WITH AUTO FADE

Designed for the discerning D.J. of professional standard. Offering a vast variety of functions. Controls: Mic Vol; Tone, over-ride depth; auto/ Manual Sw; Tape Vol; L \& R Deck Faders: Deck Volume; Treble and Bass: H. Phon Vol Selector: Master Vol On/Off Sw. Max output IV RMS.

Specification: Deck Inputs- 50 mV into $1 \mathrm{~m} \mathrm{\Omega}$; Deck Tone Controls *Treble $+20-10 \mathrm{~dB}$ at 12 kHz . Bass $+22-15 \mathrm{~dB}$ at 40 Hz ; Mic input200 ohms upwards. 2 mV into $10 \mathrm{k} \Omega$: Mic Tone Control-Total Variation Treble 15 dB . Total Variation Bass 10 dB : Tape input- 30 mV into Variation Bass 10 dB : Tape input- 30 mV into
$47 \mathrm{k} \Omega$; Power Requirements- $30-45$ volts at $47 \mathrm{k} \mathrm{\Omega}$; ${ }^{2}$.
100 mA .

Power supplies vacuum impregnated Transformers with supply board
incorporating pre-amp
supply:
PS 125 ± 50 volts for one TP125 $\mathbf{£ 1 1 . 5 0}$ PS 100 ± 45 volts for one TL100 PS 60 ± 40 volts for one TL60 PS $30 \ddagger 50$ volts for one TL30 PSU 2 for supplying disco mixer
f 10.50 ± 10.50
+9.30 £6.85 $\mathbf{£ 6} \mathbf{8 5}$
$\mathbf{8} .65$

HOW TO ORDER

 BY POSTMake cheques/P.O's payable to TUAC (WW). OR QUOTE ACCESS/BARCLAY CARD NO. and post to TUAC LTD (WW) 163 MITCHAM ROAD. LONDON SW17 9PG. We accept phone orders against ACCESS/Barclay Card Holders Phone 672-3137.

3 CHANNEL L/GHT MODULATOR

- R.C.A. 8 Amp Triacs - 1000 W per channel
- Each channel fully suppressed and fused
- Master contrul to operate from 1W to 100W
- Full wave control-12 easy connections
f14.90
Single Channel Version $\mathbf{~ f 6} \cdot \mathbf{6 0}$ ALL PRICES INCLUDE V.A.T.
POST \& PACKING FREE

PREAMPLIFIERS
All TUAC audio modules are constructed on glass fibre P.C. board, are ready assembled and fully tested. Low noise silicon and FET transistors together with H.S. carbon film resistors are used tone control circuits producing superb sound quality from any signal.
VAO8 Vol, Treble, Mid and Bass controls. Hi, IMP, FET, P.U. Sensitivity 4 mV . Treble +35 dB at 16 kHz . Mid $+20-15 \mathrm{~dB}$ at 1 Hz . Bass $+20-10 \mathrm{~dB}$ at 40 Hz . $\mathbf{f 4} 9 \mathbf{9 0}$
VA06
Vol. Treble and Bass controls. Sensitivity 8 mV . Treble +28
12 kHz . Bass +18 dB at 40 Hz .
£4.15

Stockists-Callers only.

A1. MUSIC CENTRE, 88 Dxfard St, Manchester 1. Tel. 061-236-0340. BRISTOL DISCO CENTRE, 86 Stoke Croft, Bristol 1. Tel. Bristol 41666. CALBARRIE AUDID, 88 Wellington St, Luton, Beds. TeI. Iuton 411733. SDCODI, 9 The Friars, Canterbury, Kent. Tel. Canterbury 50948. WEC LIGHTING, 35 Northam Road, Southampton. Tol. Southampton 28102.

SOUND SENSE=VORTEXION

> VORTEXION Design and manufacture public address equipment to meet a range of specific requirements for AIRPORTS, HOTELS, THEATRES, GOVERNMENT AUTHORITIES, LOCAL AUTHORITIES, SUPERMARKETS, SCHOOLS, SPORTING COMPLEXES, POP GROUPS AND THE LOCAL VILLAGE HALL.

The high fidelity amplifier illustrated has bass cut controls on each of the three low impedance balanced line microphone stages and a high impedance gram stage with bass and treble controls, plus the usual line or tape input. All the input stages are protected against overload by back to back low self capacity diodes and all use F.E.T.'s for low noise, low intermodulation distortion and freedom from radio breakthrough.

A voltage stabilised supply is used for the pre-amplifiers making it independent of mains supply fluctuations and another stabilised supply for the driver stages is arranged to cut off when the output is overloaded or over temperature. The output is 75% efficient and 100 V balanced line or 8 -16 ohms output are selected by means of a rear panel switch which has a locking plate indicating the output impedance selected.

The mixer section has an additional emitter follower output for driving a slave amplifier, phones or tape recorder, output 0.3 V out on 600 ohms upwards.

50/70 WATT ALL SILICON AMPLIFIER WITH

BUILT-IN 4-WAY MIXER using the circuit of our reliable 100 Watt Amplifier with its elaborate protection against short and overload, etc. To this is allied our latest development of F.E.T. Mixer Amplifier, again fully protected against overload and radio breakthrough. The mixer is arranged for $2-30 / 60 \Omega$ balanced line microphones, 1 -HiZ gram input and 1 -auxiliary input followed by bass and treble controls. 100 volt balanced line output OR S-15 Ω and 100 volt line.

100 WATT ALL SILICON AMIPLIFIER. \AA high quality amplifier with 8 ohms- 15 ohms or 100 volt line output for A.C. Mains. Protection is given for short and open circuit output over driving and over temperature. Input 0.4 V on 100 K ohms.

THE 100 WHTT MIXER AMPLIFIER with specification as above is here combined. with a 4-channel F.E.T. mixer. 2-30/60 Ω balanced microphone inputs, 1-HiZ gram input and 1-auxiliary input with tone controls and mounted in a standard robust stove enamelled steel case. A stabilised voltage supply feeds the tone controls and pre amps, compensating for a mains voltage drop of over 25% and the output transistor biasing compensates for a wide range of voltage and temperature. Also available in rack panel form.

20/30 WATT MIXER AMPLIFIER. High fidelity all silicon model with F.E.T. input stages to reduce intermodulation distortion to a fraction of normal transistor input circuits. Standard model 1 -low mic. balanced input and HiZ gram. Outputs available $8 / 15$ ohms OR 100 volt line.

CP50 AMPLIFIER. An all silicon transistor 50 watt amplifier for mains and 12 volt battery operation, charging its own battery and autornatically going to battery if mains fail. Protected inputs, and overload and short circuit protected outputs for 8 ohms15 ohms and 100 volt line. Bass and treble controls fitted.

Models available with 1 gram and 2 low mic. inputs, 1 gram and 3 low mic. inputs or 4 low mic. inputs.

200 WATT AMPLIFIER. Can deliver its full audio power at any frequency in the range of $30 \mathrm{c} / \mathrm{s}-20 \mathrm{Kc} / \mathrm{s}$. Can be used to drive mechanical devices for which power is 120 watts on continuous sine wave. Input 1 mW 600 ohms. Output $100-120 \mathrm{~V}$ or $200-240 \mathrm{~V}$. Additional matching transformers for other impedances are available.
F.E.T. MIXERS and PPM's. Various types of mixers available. $3,4,6$ and 8 channel with Peak Programme Meter. $4,6,8$ and 10 Way Mixers. Twin 3, 4 and 5 channel Stereo, also twin 4 and 5 channel Stereo with 2 PPM's.

1/0) D 畐 (0)

Vortexion Ltd., 257-263 The Broadway, Wimbledon, SW19 1SF. Telephone:01-542 2814 and 01-542 6242/3/4. Telegrams: "Vortexion London SW19"

The first of a new range of high quality loudspeakers

This model employs three active drive units, the total range of which extends beyond the nine audible octaves.
By giving attention to all components and design detail the colouration and distortion is negligible and the energy distribution is as constant as possible.

Five year warranty

Because of the precision required in manufacturing loudspeakers to a consistent specified performance, we can confidently predict that the Achromat 400 will have a long and trouble-free life when correctly operated.
We can therefore offer a five-year warranty on this loudspeaker system.

Stand

The Achromat 400 will give its most accurate reproduction in normal conditions when spaced at a distance of $10-20 \mathrm{cms}$ above the floor.
The Goodmans Loudspeaker Stand CS3 is recommended and gives the option of vertical or 5° tilt positioning.

Goodmans Achromat*400

Specification

Drive units
Bass unit 26 cm dia long-throw
Mid-range unit 44 mm dia
viscous damped dome radiator.
Flush mounted
HF unit 25 mm dia
viscous damped dome radiator. Flush mounted
Frequency range $40-22,000 \mathrm{~Hz}+5 \mathrm{~dB}$ Nominal impedance 8 ohms.
The loudspeaker is suitable for use with amplifiers rated at 4 or 8 ohms.
Recommended amplifier music power rating 25 to 75 Walts
Sensitivity 12 Watts for 96 dB at 1 metre Effective enclosure volume 39.5 litres
Dividing frequencies 900 and $3,500 \mathrm{~Hz}$
Weight 16.5 kg (36 lbs) net
Recommended Retail Price $£ 79.47+$ VAT
Stand $£ 6.64+$ VAT
For illustrated details please write to Goodmans Loudspeakers Limited Downley Road, Havant, Hants PO9 2NL

If you're looking for trouble you needn'tlook any further.

It's not only technicians who can see the finer points of Eagle multi-meters.

Every handyman notices them too.
They're easy to read.
They're tough.
Their construction comes up to laboratory standards.

Even our inexpensive pocket sized models have features you'd usually only find on professional equipment.

Take a look through our catalogue.
You'll see over twenty models.
Specifications that would impress the most experienced technician.

And a price range that takes in amateurs as well as professionals.

We guarantee every one for two years.
With parts to service them in no time.
So you can confidently find fault in anything.

Eagle

The name on Britain's widest range of electronic equipment.

> Please send me the Eagle electronics catalogue containing the complete range of test equipment.

Name \qquad
Address

Eagle International Precision Centre Heather Park Drive Wembley HAO 1SU Telephone 01-9030144

New automatic digital bridge from Wayne Kerr

Wayne Kerr's new 8900 is one of the best value-for-money bridges in the world.

It is universal, has a wide range, and gives immediate digital readout of resistive and reactive terms-simultaneously.

On all ten ranges, for every type of measurement available, the displays provide a complete indication of the numerical value (up to 19999), polarity, decimal points and units-automatically and in half a second.

Direct measurements of Q, dissipation and dc volts. 2,3,\& 4-terminal. Automatic lead compensation. 4-Quadrant: + ve or - ve C, L, 1/C, G and R. Overall coverage:

$10 \mu \Omega-200 \mathrm{M} \Omega$	1 nH
$0.001 \mathrm{pF}-20,000 \mu \mathrm{~F}$	$10 \mathrm{p} v$

Please send me details of the B900.
For the altention of Mr
Company name and address

WAYNE KERR
A member of the Wilmot Breeden group.

Post to Wayne Kerr, Durban Road, Bognor Regis, Sussex PO22 9RL

IP) I.L.P. (testatonestue

SHEER SIMPLICITY!

Mono electrical circuit diagram with interconnections for stereo shown

The HY5 is a complete mono hybrid preamplifier, ideally suited for both mono and stereo applications. Internally the device consists of two high quality amplifiers - the first contains frequency qualisation and gain correction, while the second caters for tone control and balance.
TECHNICAL SPECIFICATION
inputs
Magnetic Pick-up 3 mV RIAA Ceramic Pick-up
Ceramic Pick-up
Tuner
Auxillary
Input impedance
Outputs
Tape
Main output Odb $(0.775$ volts RMS $\}$
Active Tone Controls
Treble $\pm 12 \mathrm{db}$ at 10 kHz
Bass $\pm 12 \mathrm{db}$ at 100 Hz
Distortion 0.05% at 1 kHz
Signal/Noise Ratio
Signal/Noise Ratio
verioad Capability 40 db on mosit
Supply Voltage $\quad \begin{array}{r}\text { sensitive input } \\ \pm 16-25 \\ \end{array}$
PRICE $£ 4.50+0.36$ V.A.T. P \& P free
TWO YEARS GUARANTEE ON ALL OUR PRODUCTS

The HY50 is a complete solid state hybrid Hi-Fi amplifier incorporating its own high conductivity heatsink hermetically sealed in black epoxy resin. Only five connec. tions are provided: Input, output, power lines and earth.

TECHNICAL SPECIFICATION
Output Power 25 watts RMS into 8Ω Load Impedance 4-16 Ω
Input Sensitivity Odb (0.775 volts RMS)
Input Impedance $47 \mathrm{k} \Omega$
Distortion Less than 0.1% at 25 watts typically 0.05\%
Signal/Noise Ratio Better than 75 db
Frequency Response $10 \mathrm{~Hz}-50 \mathrm{kHz} \pm 3 \mathrm{db}$
Supply Voltage ± 25 volts
Size $105 \times 50 \times 25 \mathrm{~mm}$.
PRICE $£ 5.98+0.48$ V.A.T. P \& P free.

The:PSU50 can be used for eitter mono or stereo systems.

TECHNICAL SPECIFICATIONS
Output voltage 25 volts
Input voltage $210-240$ volts
Size L. $70,0.90, \mathrm{H} .60 \mathrm{~mm}$.
PRICE $£ 5.00+0.40$ V.A.T. $P \& P$ free.

Please Supply
Total Purchase Price
I Enclose Cheque \square Postal Orders \square Money Order \square
Please debit my Access account \square Barclay card account \square
Account number
Name \& Address

updating from

PLASTIC VOLTAGE

 TORS
A regular and constant output

whatever the input

Bestselling voltage regulators now in plastic

Following the sweeping success of SGS-ATES integrated fixed voltage regulators in TO-3 metal can, these circuits are now also available, ex stock, in SOT 32 plastic package.
Designated L129, L130 and L131, they are suitable for low cost applications in professional, industrial and consumer equipment requiring compact components with low/medium output current. such as

- desk calculators
- video displays
- computer peripherals
- touch tuning and remote control for TV sets
- TV subsystems, such as video IF, sound IF, sync and chroma stages
A particularly interesting area of application is in local regulation systems. The main advantages of this circuit technique over traditional single point regulation are the reduction in common ground and inter-circuit coupling, high noise immunity and the elimination of problems due to line voltage drops.

Special features of the circuits include

- tight tolerance on the output voltage
- load regulation less than 1%
- ripple rejection 60 dB typical
- internal overload protection
- short circuit protection The L129, L130 and L131 are designed to operate in the $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. For the standard operating temperature range, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, these plastic voltage regulators are available with type numbers TDA 1405, 1412 and 1415.

-20° to $+85^{\circ} \mathrm{C}$	V_{0}	Io reg. typical	0° to $+70^{\circ} \mathrm{C}$
L 129	5 V	850 mA	TDA 1405
L 130	12 V	$\mathbf{7 2 0 \mathrm { mA }}$	TDA 1412
L 131	15 V	600 mA	TDA 1415

New! Straight-lead metallised Polyester Film Capacitors

* small package * prompt delivery * low inductance

These latest additions to the Series 51016 range come in four working voltages ($160 \mathrm{Vdc}-630 \mathrm{Vdc}$), have a capacitance range of $0.01 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ and have a flameretardent and solventresistant coating. Kinked lead versions for p.c. board stand-off also available.

Axial lead requirements can also be met from Series 61013 and 51012 ranges.

TranscapMiniature Ceramic DiscCapactors

*high capacitance-to-size ratio * low eost * early delivery $* 10,000 \mathrm{pF}-0.22 \mu \mathrm{~F}$. Primarily for decoupling applications, these Transcaps, together with the standard temperature-compensating, $\mathrm{Hi}-\mathrm{K}$ and High Voltage devices offer complete disc ceramic capability.

MonoblocMonolithic Ceramic Capacitors
 * high capacitance

* good delivery * premium quality

Designed for professional applications where size and stability of performance are paramount.

Available in BS 9000 approved moulded finish as well as dipped ('Redcap') and chip configurations. Ideally suited for coupling and decoupling of integrated circuits.

Improved Ratingson Aluminium Electrolytic Capacitors

* early delivery
* high ripple current capability
* high temperature ratings
* high capacitance-to-size ratio

Tubular Polarised (types 201 and 211) manufactured to BS 9078-NOO1 and to DIN 41332 Ripple rating standards with temperature ratings up to $85^{\circ} \mathrm{C}$. General Purpose Polarised. (types 311, 312 Dual Section and 321), first introduced in 1973 as a concise yet wider range to conventional sizes. Now being stocked in much larger quantities to meet growing demand. Eight working voltages (6.3 Vdc 160 Vdc) at $85^{\circ} \mathrm{C}$ with improved ripple current capability.

IMMEDIATE SMALL ORDER SUPPLIES

For quantities of up to 1000 Transcaps, Monoblocs and Aluminium Electrolytic Capacitors ex stock and, in due course, for the new Straight Lead Polyester Film Capacitors contact our Supplies Division.

> FOR FULL DETAILS ON ALL COMPONENTS RING TECHNICAL SALES TODAY ON GREAT YARMOUTH (0493) 56122

[^2]Wide
rangeof TTL toPost 0ffice Spec
The Mullard range of TTL integrated circuits approved and provisionally approved to the stringent Post Office Specification D3000 now comprises 22 types. They are being supplied to Post Office contractors and are to be offered to other equipment manufacturers who are concerned with very high standards of reliability.

All types in the D3000 range are functionally equivalent to types in the well-known GFB7400D series. Encapsulation is ceramic 14-and 16-lead dual-in-line.

The specification includes important overstress and endurance tests with exacting internal inspection requirements. It assures an extremely high standard of reliability and long life performance, and users can expect a component life of forty years with cumulative failures not greater than 2 per cent. For a leaflet summarising the range use reader enquiry service no. WW069.

NEW MODULES FOR MOBLIES

The highly successful u.h.f. amplifier modules manufactured by Mullard are to be followed up by two v.h.f. types. These are type numbers 437BGY and 438BGY covering the frequency ranges $148-174 \mathrm{MHz}$ and $68-88 \mathrm{MHz}$ respectively.

Apart from their frequency range, both the v.h.f. modules provide the same performance: minimum output power 18 W for an input of 150 mW with a typical efficiency of 45%. Input and output impedances are 50Ω, and the nominal supply voltage is 12.5 V .

Among the operational features are the ability to withstand severe load mismatch and the provision for control of the output power by variation of the supply voltage. The operating temperature range is from -40° to $+90^{\circ} \mathrm{C}$.

By basing equipment on the modules, manufacturers can cut design time and also reduce
the number of assembly operations.
Furthermore, as the modules are untuned, no adjustment is needed in the test room. For provisional data please use reader enquiry service no. WW070.

Space-saving circulators

Significant savings in space and weight can be made in communications and radar equipment by using Mullard miniature circulators. Despite their small size, they feature the same lowloss characteristics and wide bandwiths as their full-size counterparts.

There are eight ferrite 3-port types capable of handling up to 300 W in the u.h.f. region, and four microwave types rated at 50 W .

The u.h.f. types are divided into

Which Ferrite

 Core?A useful aid to finding the right type of ferrite inductor or transformer core for any particular application is provided by a new wallchart from Mullard. All preferred design types in their various shapes, sizes and materials are clearly summarised. For a copy please use reader enquiry service no. WW071.

100 W and 300 W families. Bandwidths fall within the spectrum 470 to 1000 MHz , and isolation is typically 25 dB . Connectors are N-type with the option of HF 7/16 DIN 47223 connectors for the high power circulators.

The four microwave circulators are broadband types providing
coverage through the S, C and X bands, and isolator versions are available of each type. Isolation depends on the band and is typically between 23 and 27 dB . Connectors are SMA coaxial.

For further information please use reader enquiry service no. WW072.

NEW CORESSPECIFCALIIY FORSWTCHEDMODE POWER

Designers of switched mode power supplies no longer have to use transformer cores of a material and shape which are meant for quite different applications. A new range of ferrite cores being introduced by Mullard, the FX3700 series, is intended specifically for the job.

Insulation and safety, the special stresses of switched mode operation, winding economics, modes of circuit failure, mechanical specifications and BSI requirements have all been carefully considered in the design.

The cores may be used in units where the input is derived from rectified mains or from batteries,
and are suitable for designs covering a wide range of outputs. When used in 25 kHz push-pull circuits at the unfavourable end of the application spectrum (supplying low voltage, 5 V , output) d.c. output powers from 50 W to 500 W can be obtained. Higher outputs can be obtained in more favourable applications, and the cores can, of course, also be used in single-ended circuits.
An application note is available which not only simplifies transformer design but helps to save time, money and trouble elsewhere in the circuit. For a free copy and data on the cores please write to Dept. C.I.H., Ref: CPS/C23, Mullard Ltd., New Road, Mitcham, Surrey CR4 4XY.

[^3]
Linear power for S.S.B.

Three highly linear r.f. power transistors for single-sideband applications from manpacks to ship-to-shore transmitters are available from Mullard.

In all three the intermodulation products are typically more than 30 dB down on full rated output. Under some conditions this figure is even better than 40 dB . Furthermore, all three are electrically rugged and can withstand severe load misniatch.

The most powerful member of the family is the BLX15. Operating from supplies of up to 50 V m the range 1.6 to 28 MHz , it can supply 150 W p.e.p. singly or 300 W p.e.p. in push-pull. Also, the full power rating is maintained up to 108 MHz in the c.w. mode.

The two companion types, the BLX13 and BLX14, operating from $24 / 28 \mathrm{~V}$ supplies over the range $1 \cdot 6$ to 28 MHz can supply p.e.p. outputs of 25 W and 50 W respectively.

All three transistors are in plastic 'capstan' packages. For full data please use reader enquiry service no. WW074.

Key to colour cameratv reliability

Millions of burning hours are being registered by Plumbicon* colour camera tubes in television broadcasting in the U.K. Some programme companies are reporting lives of over 7,000 hours. In telecine equipment, lives of over 10,000 hours are not uncommon.

If you are 'tubing up for colour', Plumbicon tubes from Mullard are a wise choice. There are 36 types to choose from. Use reader enquiry service no. WW075 for a wallchart.

SINGIE-CHIP ERROR DETECTOR

What is virtually a complete sophisticated error detection system is contained in one 18-lead DIL integrated circuit recently announced by Mullard. Designated type GZF1202, it is a LOCMOS (local oxidised silicon complementary MOS) device, and consequently has a low power consumption and can be used with TTL components.

In operation, a GZF1202 at the transmitter and another at the receiver divide the message by a polynomial expression and the remainders are compared. If they are different, an error has occurred. The message is transmitted in its original form with the remainder added to the end.

The GZF1202 provides for the use of six standard polynomials, and is thus suited for use in a variety of applications from modem interfaces to peripheral equipment such as disc stores. Samples of the IC are available for evaluation and data can be obtained by using reader enquiry service no. WW076.

The Mullard company is no newcomer to the supply of components for TV distribution systems and similar applications. For nearly a decade it has made available broadband transistors, and types such as the BFY90, BFW30 and BFW16A are now well established.

With demands for lower and lower cross-modulation distortion and more and more channel capacity, a second generation of Mullard broadband transistors has appeared. Prominent among them is the BFR94. This has an f_{T} of 3 GHz which is maintained at currents up to the unusually high region of 125 mA . In this transistor, low cross-modulation, intermodulation and second-order distortion are combined with excellent broadband and low-noise performance.

Moreover, the low crossmodulation behaviour is straightforward and does not depend on operation at critically favourable collector currents and output voltages. A shift-due to a change in temperature, say-does not therefore result in a rapid rise in cross-modulation distortion.

Another second-generation broadband device, the BFR96, can be used to drive the BFR94. It covers the range 40 to 860 MHz , power gain is typically 8 dB and typical output voltage is 600 mV . Other types of transistor of similar interest are the BFR90 to BFR93. Data on all types mentioned can be obtained through the reader enquiry service no. WW078. by 'Electron'

A HUNDRED-THOUSAND TIMES BRIGHTER

Image intensifiers which enable you to see on an overcast moonless night, by amplifying light by as much as 100,000 times, are fullyengineered items in regular production at Mullard.

The intensifiers manufactured include single-and multi-stage electrostatically focused types and electrostatically focused microchannel inverter types. For information on the range and its
special features use reader enquiry service no. WW077.

Components for communications - broadcasting, telecommunications, radar, navaids, military
Mullard Limited Mullard House Torrington Place London WC1E 7HD
Telephone: 01-5806633
M.010

Wherever there is appreciation of fine sound reproduction, insistence is upon British loudspeaker systems.

 Renowned among the discerning for their outstanding quality, the products of A Mordaunt-Short Ltd. are specified by professionals and by enthusiasts the world over. Choose them for your home - where the finest most concerns you.

Four easysteps to improve your instructional video system.

First purchase a good monitor. The ITC PM $171 T$ for example, is perfect. It guarantees clarity, brilliance and definition; even if the picture comes straight from the moon. And our price is strictly earthbound, just $£ 140$. With the special video effects we have in mind, you'll need the ITC PM 171T monitor.

Now add the VP 315 video pointer. This advanced unit superimposes an arrow indication on your video system picture. The joy-stick control panel makes arrow positioning simple. And the arrow can be shown in black or white in a steady or flashing model either horizontal or vertical, in any size you want. We bring it to you at only $£ 285$.

2

Next purchase the VTG-33F time and date generatorit gives legible reading from 100th of a second, through seconds, minutes, hour, day, month.* Perfect for any countdown. The precise timing is provided by the electronic crystal controlled IC circuitry. This generator is compatible with any new or existing television system, colour or black and white. And costs just $£ 280$.
(Prices subject to VAT)
Lastly, step into Dixons Technical. That's where you can buy all the above hardware. While you're in, look over all the other spaceage equipment we have for improving your video system. We'll give you a personal demonstration, help you choose the equipment you need, then install it.
Please send full details for the
ITC PM $171 T$ Monitor \square
The VTG-33F Video Display Generator \square The VP 315 Video Pointer \square
I Name \qquad
Address \qquad

To: Dixons Technical,

- 3 Soho Square,

London WI.
Tel:01-4378811

-Also available showing seconds, minutes, hour, day, month, year. This mecel is very sultable for time lapse vided recording.

WW- 020 FOR FURTHER DETAILS

The symbol of sound quality.

Unit Audio

Superbly made speaker enclosures containing high quality units designed to improve your listening pleasure. Ask for demonstrations of the KR6, PF6, PF8, MP6, MP138.

Power ratings from 8 watts (music power) to 20 watts (music power).

Illustrated here is

 the new MPG.

For further information and address of your local stockist write to: K.F. Products Ltd., Ashton Road, Bredbury, Stockport, Cheshire.

WW-032 FOR FURTHER DETAILS

DIIITAL CIOCKS BYWOOD DIGITRONIC III

The DIGITRONIC III is the latest addition to the range of digital clocks and kits available from BYWOOD. The solid-state heart of the clock is the CAL-TEX CT7001 with the Beckman (Sperry) orange neon seven segment display for the readout. The clock has time, date and alarm functions with a snooze alarm disable feature for use on cold, wet mornings.

The recommended retail price of the clock is $£ 46.50$ plus VAT but the special offer price is only $£ 30.00$ including VAT, a saving of over E20, a Christmas present from us to you.

BUTI The offers do not end there. Each coupon also counts as an entry to our competition, the winners will be given the choice of another DIGITRONIC III or the return of their $£ 30$. The five lucky winners will be picked at random from all the correct entries on 19th December 1974 and we hope will receive their clock or cheque in time for Christmas.

Competition is only open to customers purchasing on the special offer, offer and competition open until 5pm 18 th December, coupon must accompany all orders-if somebody has already used the coupon phone us, we may be able to help. You don't have to answer the competition to get the special offer.

The competition is based on the fact that leap years are the only things that upset the DIGITRONIC III as they do not take Feb. 29th into account. To help envisage how often this happens we would like you to tell us how many leap years there have been in England between Jan. 1st 1474 and Dec. 31st 1974, i.e. in the past 500 years.

For further details on our products please send SAE to -

SPECIAL OFFER COMPETITION

f46.50 + VAT

 OFFER PRICE $£ 30.00$SPECIAL OFFER COUPON
To: Bywood Electronics
181 Ebberns Road. Hemel Hempstead. HP3 9RDW.
FROM -
\qquad
\qquad
\qquad

I enclose cheque/cash/P.O./M.O. to the value of E30.00, please send me a DIGITRONIC III clock. My competition answer is that there have been leap years in the past 500 years.

Offer and competition ciosing date is 5 pm 18th December, 1974.
Clocks will be despatched in time for Christmas.

Linstead

Twinstabilised

PowerSupplies

 Each comprising: Two powerful bench supplies. Continuously variable.Independently operable, or in series, or parallel. Fully protected against overload and short circuit. In one compact robust case.

2×0 to 20 V 0 to 0.5 A
with twenty 1 volt steps and fine control.
Voltage set by controls.
Current continuously monitored
0 to $100 \mathrm{~mA}, 0$ to 0.6 A .

st

2×0 to 30 V 0 to 1A. Set by switches and fine control. Meters switchable for volts. 0 to 100 mA and 0 to 1 A . Re-entrant protection. Pilot indication of overload.
plus VAT

Prnstayd

the best for less

BRITISH MADE BY LINSTEAD
Linstead Electronics, Roslyn Works, Rosiyn Road London N15 JJB. Telephone 01-802 5144

Ireland, Lennox Laboratory Supplies Ltd., 3-4 South Leinster Street
F.O. Box 212 A , Dublin 2
Denmark, Seanfysik, 13-15 Hjorringgade, DK 2100, Copenhagen Sweden, EM1 Svenska A/B, Tritonvagen IV, Fack,
Norwey, Sviry Equipment Sdn, Bhd, P.O. Box 60 , Batu
Malaysia, Laboratory Equipment Sdn. Bhd., P.O. Box 60, Batu Pahat
Benelux, A.S.E. Ltd., Nationalestreet 38, B-2000 Antwerp

New MULTI-PEn RECDRDERS
with even greater performance. $100 \mu \mathrm{~V}$ f.s. 0.3 sec .f.s.

MULTICORDER

Multi-channel, $2-6$ with full range zero set.
*Multi-pen - felt tipped 6 colours

* 16 switched chart speeds. $2.5 \mathrm{~mm} / \mathrm{hr}$ $101200 \mathrm{~mm} / \mathrm{min}$.
*Choice of Z fold or roll chart
*Five plug-in preamplifiers switched ranges 100 uv -500 V f. sensitivity. Also 100 mV for OEM

WW-009 FOR FURTHER DETAILS

Make light work of wiring
 with the NIW

Countless uses in industry and offices * Quick and easy to appiy even in awkward places * saves damage to wood and paintwork * STICKS ON IMSTANTLY: HOLDS WIRE FIRMLY You'll save enormous time and trouble with the new Brandauer adhesive staple. Just peel off the backing strip and press staple into place. Then bend clips over to hold wire firmly in position. No messing with pins, tacks, soldering or drilling. No damage to woodwork, e.g. skirting boards. Use the Brandauer Staple for any wall, frame or cabinet wiring jobs - it's wonderfully easy for fitting in those awkward corners.

Send now for details to:
SPECIAL PRODUCTS DISTRIBUTORS LTD. 81 Piccadilly, London WIV OHL. Tel:01-629 9556.

Barr \& Stroud's new EF3 Electronic Filter System means no more compromises when you buy variable filters. Now you can get the filter you need today, and additional plug-in units tomorrow. Today - the basic main frame and your choice of two modules to operate in low-pass, high-pass, band-pass, band-stop, band-separate, band-combine or cascade modes. Tomorrow - other interchangeable modules to meet your newest requirements. The first two modules,
already available, provide filtering with variable cut-offs between 0.01 Hz and 10.0 kHz , stop-band attenuation of $48 \mathrm{~dB} /$ oct. ($96 \mathrm{~dB} /$ oct. in cascade), and pass-band response from dc to 500 kHz . Get full details of EF3, the big breakthrough in electronic filtering from BARR \& STROUD LIMITED 1 Pall Mall East, London SW1Y 5AU Tel: 01-930 1541
Telex: 261877

EAARER AND stroum
Glasgow and London WW- 015 FOR FURTHER DETAILS

D.D. Moyd instruments timited

Brook Avenue, Warsash,Southampton SO36HP. Tel:Locks Heath 4221
Telex No: 477042 - JAY JAY - SOTON

- RADFORD

AUDIO MEASURING INSTRUMENTS

LOW OISTORTION DSCILLATOR SERIES 3

A continuously variable frequency laboratory oscillator with a range $10 \mathrm{~Hz}-100 \mathrm{kHz}$, having virtually zero distortion over the audio frequency band with a fast settling time.

Specification:

Frequency range:
Output voltage:
Output source resistance:

Output attenuation:
Output attenuation accuracy: Sine wave distortion:

Square wave rise and fall time:
Monitor output meter
Mains input:
Size:
$10 \mathrm{~Hz}-100 \mathrm{kHz}$ (4 bands)
10 volts r.m.s. max.
150 ohms unbalanced
(optional 150 ohms unbalanced. plus 150/600 ohms balanced/floating) $0-100 \mathrm{~dB}$ (eight, 10 dB steps plus $0-20 \mathrm{~dB}$ variable)
1\%
Less than $0.002 \% \quad 10 \mathrm{~Hz}-10 \mathrm{kHz}$ (typically below noise of measuring instrument)

40/60 n.secs.

Scaled $0-3,0-10$, and dBV.
$110 \mathrm{~V} / 130 \mathrm{~V}, 220 \mathrm{~V} / 240 \mathrm{~V}$
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high x $8 \frac{3}{4 \prime \prime}(22 \mathrm{~cm})$ deep

Price: 150 ohms unbalanced output: E250
$150 / 600$ unbalanced/balanced floating output: $£ 300$

OISTORTION MEASURING SET, SERIES 3
 (illustrated above)

A sensitive instrument with high input impedance for the measurement of total harmonic distortion. Designed for speedy and accurate use. Capable of measuring distortion products down to 0.001%. Direct reading from calibrated meter scale.
Specification:
Frequency range:
Distortion range (f.s.d.):
Input voltage measurement
range:
Input resistance:
High pass filter:
Power requirement:
Size:
Price:
$5 \mathrm{~Hz}-50 \mathrm{kHz}$ (4 bands) $0.01 \%-100 \%$ (9 ranges)
$50 \mathrm{mv}-60 \mathrm{~V}$ (3 ranges)
47 K ohms on all ranges $12 \mathrm{~dB} /$ octave below 500 Hz $2 \times$ PP9, included.
$17^{\prime \prime}(43 \mathrm{~cm}) \times 7^{\prime \prime}(18 \mathrm{~cm})$ high $\times 8 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ $(22 \mathrm{~cm})$ deep £200

Now available in reasonable delivery time

RADFORD LABORATORY INSTRUMENTS LIMITED

Bristol BS3 2HZ Telephone 0272662301

TELCON

magnetic shields magnetic alloys and cores

Now suitable for U.K., European and American voltages...

Minimod, the versatile British made range of encapsulated power supplies first introduced in 1973, has now been extended to cover European and North American mains voltages (and is interchangeable with most American types). Normally available ex-stock, all units are fully stabilised with fold back current limiting - the 5 V models have over voltage crowbar too!

STANDARD MODELS

Type Number	Output Voltage	Output Current Amps	Short Circuit Current mA (Typical)	\% Regulation Line and Load (Typical)
PU01	5 ± 0.1	0.5	370	0.3
PU02	5 ± 0.1	1.0	770	0.5
PU03	$15-0-15 \pm 0.20 .10$	37	0.1	
PU04	$15-0-15 \pm 0.20 .20$	84	0.1	
PU05	$12-0-12 \pm 0.2$	0.12	45	0.1
PU06	$12-0-12 \pm 0.2$	0.24	120	0.2

Input voltage ranges $103-126 \mathrm{~V}, 200-240 \mathrm{~V}$. $210-250 \mathrm{~V}$. Frequency $50-400 \mathrm{~Hz}$ all types.

Comprehensive specification given in brochure GT 29b which is available on request.

\star SPECIAL DESIGN SERVICE

Custom built units for applications requiring different specifications are produced as part of our standard service. Try us first.

Gardners

Specialists in Electronic Transformers \& Power Supplies.

GARDNERS
 TRANSFORMERS LIMITED

STARWET

Spectrum Analyser Module ST858

SPECIFICATION: Frequency range 10 MHz to 850 MHz in two calibrated ranges Sensitivity Better than 50 mv for 0.5 V per cm Resolution Better than 25 KHz . Dispersion From less than 1 MHz to 400 MHz variable Input Via 50 ohm BNC connector on front panel Output 1 Coax cable for connection to Y input on scope Output 2 Coax cable for connection to sync. input on scope Power requirements 240 volts AC 50 Hz 10 watts. (Other voltages and frequencies available as required) Size Width $11 \mathrm{in}(28 \mathrm{~cm}$.) Height 4.375 in . (11.2cm.) Depth $8.5 \mathrm{in} .(21.6 \mathrm{~cm}$.) Nett weight $7.5 \mathrm{lbs}(3.4 \mathrm{Kg})$ Gross weight 1 OHbs (4.5 Kg .)

For further details contact the sole distributors of STARWET equipment:

7-9 ARTHUR ROAD, READING, BERKS (rear Tech College) TeI. Reading 582605

WW- 084 FOR FURTHER DETAILS

Acclamed as the World's leading telescopic tiltover tower in the field of radio communication Models from 25° to 120°

GTーM M =
Strumech Engineering Co Lid Coppice Side. Brownhills. Walsall. Staffs

WIMAMKS

Transducer and Recorder amplifiers and systems

reliable high performance \& practical controls individually powered modules-mains or dc option single cases and up to 17 modules
in standard $19^{\prime \prime}$ crates small size-low weight _realistic prices.
 49/51 Fylde Road, Preston PR1 2XQ Telephone: PRESTON 57560

WW- 021 FOR FURTHER DETAILS

ENGINEERS

Do you want promotion, a betler job, higher This helpful guide to success should be read pay? "New Opportunities" shows you how to by every ambitious engineer, get them through alow-cost home study course. There are no books to buy and you can pay-asSend for this helpful 76-page FREE book now. No obligation and nobody will call on you. It
could be the best thing you ever did.

POS 7 CHOOSE A BRAND HEW FUTURE HEREI

Tick or state subject of interest. Post to the address below.

Computer Programming General Radio and TV Engineering
\square Radio Servicing, Maintenance \square and Repairs
\square Transistor Technology
■ C. \& G. Installations and Wiring - C. \& G. Electrical Technicians \square C. \& G. Telecommunications
\square Radio Amateurs' Exam. etc., etc.

LLEGE

Dept BWW95, Reading RG7 4PF
QK

NAME (Block Capitala Please) AQDRESS
Other subjects.
Accredited by C.A.C.C

- Ago.

HOME OF BRITISH INSTITUTE OF ENGINEERING TECHNOLOCY

The quality of the sound you hear from your hi-fi depends on the quality of transcription from the record-so you won't want to skimp on quality. When you choose your turntable deck, you'll probably choose Garrard.

Fifty-five years of Garrard experience and know-how in producing top-quality record playing equipment is concentrated in the range of record playing units now available. There are three modules complete with attractive bases and lift-off covers, ready-wired for instant installation.

The SP25 Mk IV is the most popular budget unit on the market. It features the famous Garrard four-pole synchronous motor to ensure smooth, constant speeds, the finely engineered pickup arm with resiliently mounted counterbalance weight, calibrated bias compensation and damped cueing.

The 86SB represents just about the best buy in hi-fi today. It incorporates belt drive, the famous Garrard four-pole synchronous motor, high inertia turntable, contoured mat, precision pickup arm with fine stylus force adjustment and bias compensation calibrated for elliptical and conical styli.

The Zero 100SB has every quality feature you could expect to find on a record deck. What makes it truly unique is the tangential tracking pickup arm virtually eliminating tracking error and consequent harmonic distortion. Other features include adjustable, resiliently-mounted, counterbalance weight, fine stylus force

Sarrard
 A PLESSEY QUALITY PRODUCT

Garrard, Newcastle Street, Swindon, Wiltshire.
adjustment, magnetic bias compensation calibrated for elliptical and conical styli, high inertia turntable with contoured mat, a record counter and the famous Garrard four-pole synchronous motor.

Use the coupon to obtain your free copy of the fullcolour brochure on the complete range of Garrard record playing units.

Eliminate TV receiver distortion with Celestion TELEFI

TELEFI

At last you can enjoy TV entertain-
ment with the added pleasure of true
$\mathrm{Hi}-\mathrm{Fi}$ sound. Telefi is a unique electronic invention which picks up VHF from the TV and relays this through your own Hi-Fi equipment. Telefi ensures crisp, full-range, distortionfree reproduction of music and speech providing an improvement over ordinary TV sound which will amaze you. Tele-fi is safe and requires no permanent connection to the TV set. Telefi is indispensable to the TV viewer who requires $\mathrm{Hi}-\mathrm{Fi}$ TV sound.

LOUDSPEAKERS

Celestion Loudspeakers are engineered to the highest standard and provide superlative sound reproduction. The cut-away illustration shows the high, mid and bass speakers used in the Ditton 44 Monitor, one of the most popular loudspeakers available to the discerning listener.
A range of models is available to suit your personal requirements, Celestion Hi-Fi Loudspeakers carry a five-year guarantee.

The Hadleigh loudspeaker, was specially created to meet a public demand for a high quality speaker of compact proportions. Not a difficult task for Celestion who produce the most popular bookshelf speaker ever (Ditton 15) -but we set out not only to produce an immaculate loudspeaker with a sparkling performance, but to do so at a budget price. For the enthusiast seeking a really excellent $\mathrm{Hi}-\mathrm{Fi}$ system at reasonable outlay we recommend without hesitation the Hadleigh.

Celestion

Loudspeakers for the Perfectionist DITTON WORKS, FOXHALL ROAD, IPSWICH, SUFFOLK IP3 8JP.

SIMPLE TO USE

Allow R500 to heat up

TEN GOOD REASONS FOR ITS SUCCESS

11	The efficient way of removing unwanted solder	$\mathbf{6}$ Easy to use
Overall design gives		
clear vision of work		

[^4]To obtain further details of any of the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them direct in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication. Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription, place a tick in the box on one of the postage-free cards opposite and fill in your name and address.

BUSINESS REPLY SERVICE

 Licence No. 12045
WIRELESS WORLD,

 READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PSEnquiry Service for Professional Readers

Wireless World, December 1974
WIRELESS WORLD
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
\qquad
\qquad
\qquad

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No. of employees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Postage will
be paid by Licensee

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Isiands or N. Ireland

USINESS REPLY SERVICE Licence No. 12045
WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional

 Readers| WW.... | WW.. | WW. |
| :---: | :---: | :---: |
| WW. | WW. | WW. |
| Ww. | WW. . | WW. |
| WW. | WW | Ww. |
| WW | WW... | WW. |
| WW | WW.... | Ww |
| WW | WW. | ww |
| WW. | WW. | ww |
| WW. | WW. | wW |
| WW | WW. | Ww |
| WW. | WW. | Ww |
| WW | WW. | Ww |
| WW. | WW. | WW. |
| WW. | Ww.. | ww |
| WW. | WW. | Ww |
| WW . . . | WW.... | WW. |

WIRELESS WORLD
Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
Name . .
Name of Company
\qquad

Telephone Number

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business .
No. of employees at this establishment
I wish to subscribe to Wireless World
VALID FOR SIX MONTHS ONLY

Do not affix Postage Stamps if posted in
Gt. Britain, Channel Islands or N. Ireland

BUSINESS REPLY SERVICE Licence No. 12045

WIRELESS WORLD, READER ENQUIRY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

Enquiry Service for Professional Readers

WW....	WW....	WW...
WW.	WW.	Ww
WW.	ww. .	WW.
Ww . . .	WW....	WW
Ww.	WW.	ww
WW. . .	WW....	WW
WW	WW.	Ww
ww. . . .	ww....	ww
Ww	WW	WW
WW.	WW....	Ww
WW.	WW....	ww
WW	Ww.	Ww
WW.	ww....	Ww
WW.	Ww..	WW
WW.	ww.	Ww
WW . . .	ww....	WW....

Wireless World, December 1974

WIRELESS WORLD

Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the space provided.
\qquad
Name of Company .

Address.
\qquad

PUBLISHERS USE ONLY			A/E			

Position in Company
Nature of Company/Business
No: of employees at this establishment
I wish to subscribe to Wireless World

IF you buy electronic or electrical components, industrial or consumer fastenings...

As the largest stockists of Cinch, Dot \& FT products we shall be happy to deliver smail or assorted quantities of anything you need. Let us have your next enquiry.

Make United-Carr Supplies your SINGLE SOURCE for

CINCH
 (6)

Catalogues and samples available to Companies specifying their probable requirements.
United-Carr Supplies Ltd, 112 Station Road,
llkeston, Derbyshire, DF7 5LF.
Tel: Ilkeston 78711 STD 0607278711
Telex: 377117

\oplus

 θ
 TRANSISTOR (1) data?
 THE SEMICON

INTERNATIONAL TRANSISTOR DATA MANUAL
lists over 20,000 transistors of international origin enabling you to identify, test and select the characteristics of a very wide range of discrete devices.

EXTENSIVE SUBSTITUTION GUIDE CV NUMBERED DEVICES OUTLINE DRAWINGS

ALTERNATIVE MANUFACTURERS AND AGENTS ADDRESSES

PLUS - A FREE UPDATING SERVICE

ORDER NOW $£ 8.80$ includes postage (TO COUNTAIES OUTSIDE UK ADD 6OP POSTAGE) FULL REFUND IF NOT COMPLETELY SATISFIED PUBLISHED BY
SEMICON INDEXES LTD.,
2, DENMARK ST, WOKINGHAM, Berks. RG11 2BB
Tel: WOKINGHAM (STD 0734) 786161

METER PROBLEMS?

A very wide range of modern design instruments is available for $10 / 14$ days' delivery.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, w.C. 1 Phone: 01/837/7937

P.G.BOREO?

- not with the

OEGO 33PC

A unique drafting aid for the electronics engineer enabling him to prepare in minutes a perfect PCB.
A fine-tipped marker charged with a free-flowing etch-resist ink. Simply draw the desired circuit onto copper laminated board-etchclean.

The circuit is ready to uso.

NO MESS - NO MASKING

 A perfect circuit every time!$\mathbf{£ 1 . 0 0}$ for one-off, $£ 4.00$ for six, $£ 8.00$ for twelve plus VAT post included. A vailable now in every country in Europe.

Etilystone Radio

Economy! Simplicity! Reliability!

1830 Series C.W, M.C.W, A.M, S.S.B

Crystal controlled
Transistorized HF/MF general purpose receiver $120 \mathrm{kHz}-30 \mathrm{MHz}$ in 9 ranges
Rack mounting as standard Cabinet optional extra
AC or battery operation
British MPT approved as
ships reserve receiver

Illustrated brochure from:

Eddystone Radio Limited

Alvechurch Road, Birmingham B31 3PP. Tel: 021-475 2231. Telex 337081.
A member of Marconi Communication Systems L.td

VOLTAGE TO FREQUENCY FREQUENCY TO VOLTAGE

* All ANCOM converters have built-in reference sources
* Linearity and stability, factory specified
* Negative or Positive input types
* Floating output
* Applications, A-D conversion Precision Integrators Telemetry of analogue signals Shaft rotation etc.
* Auxiliary modules Telemetry amplifiers Clock modules

BRITISH MADE QUICK DELIVERY

DEVONSHIRE STREET CHELTENHAM, ENGLAND ک7 024253861 or 24690

WW-091 FOR FURTHER DETAILS

This new frequency multiplier produces an output frequency which is either 60X or 100X the input frequency. Thus LF e.g., low audio, can be resolved without counting for ages. 60X range converts Hz to RPM with any 1 sec . gate counter. NO WAITING NO RECIPROCALS

Sheltan

FREQUENCY MULTIPLIER FX-1

RESOLVE 0.01 Hz IN ONLY FOUR SECONDS OR READ RPM DIRECTLY.
WORKS WITH ANY FREQUENCY METER.
ONLY £29.50

INSTRUMENTS LTD., 24 Copenhagen Street, LONDON N1. Tel: 01-278 6273
WW-053 FOR FURTHER DETAILS

WW- 092 FOR FURTHER DETAILS

A NEW STANDARD FOR SOUND REPRODUCTION HD250 High Definition Stereo Control Amplifier

Designed for disc and tuner input and two tape machines, with complete recording and reproducing facilities.

The HD250 amplifier establishes a new standard in amplifiers for sound reproduction in the home. Improvements have been made in respect of performance, engineering design and quality of construction. We believe that no other amplifier in the world can match the overall specification of the HD250. Look at extracts from the specification below.

Power output.
Rated:

Maximum:
Distortion.
Pre-amplifier:
Power amplifier. at rated output: at 25 w output:
50 watts average continuous power per
channel, into any impedance from 4 to 8
ohms, both channels driven.
90 watts average power per channel into
5 ohms load.
Virtually zero. (Typically below noise
of measuring instrument.)

Less than 0.02% (typically 0.01% at 1 kHz). Typically 0.006%.

Overload margin.
Disc input
Hum and noise output.
Disc:
-83 dBV Measured flat with noise bandwidth of 23 kHz .
-88dBV Measured with ' A ' weighted characteristic.
$-85 d B V$ Measured flat.
-88 dBV ' A ' weighted.
17 inches $\times 4 \frac{3}{4}$ inches $\times 11$ inches deep overall.
21 lb.

Write or phone for leaflet which describes the design philosophy and conception of the HD250 together with a complete specification.

RADFORD AUDIO LIMITED, BRISTOL, BS3 2HZ Telephone: 0272662301

WW- 060 FOR FURTHER DETAILS

MAPLIN ELECTRONIC SUPPLIES

P.O. Box 3, Rayleigh, Essex. Tel: Southend-on-Sea (0702) 44101 - T Please add 8% to the final total. Post and Packing FREE in U.K. (15p handling charge on orders under £1)

First-class post pre-paid envelope supplied free with every order.

CATALOGUE

Send just 25 p NOw! for our superb 80-page CATALOGUE. It's packed with photographs, illustrations, and pages and pages of detailed data on our complete range of transistors, diodes, I.C.s etc., etc. Seeing exactly what you're buying makes ordering so easy!

SEAFLET MES 24: Describes a reverberation module with a choice of two different spring units. (Just send s.a.e. please for leafiet.)

LEAFLET MES 51: Describes a complete clectronic organ which can be constructed using our highquality component parts. These are designed so that they may be used later as the basis of a series of larger and more sophisticated designs. (Please send 15p for Leaffet MES 51.)

ORGAN BUILDERS
MES announce the very latest development in organ circeitry.

THE DMO2
13 Master Frequencies on ONE tiny circuit board ${ }_{\star} 13$ frequencies from C8 to C9, \star Each frequency digitally derived from a SINGLE h.f. master oscillator. \star Initial tuning for the WHOLE ORGAN: ONE
SMMPLE
ADJUSTMENT. \star Relative tuning NEVER DRIFTS! ADJUSTMENT. \star Relernal control allows tuning NEVER to other musicians, \star Outputs will directly drive most
types of dividers including the SAJ10 types of dividers including the SAJ110. \star And each
output can also be used as a direet tone source. \star Varioutput can also be used as a direct tone source. \star Van-
able DEPTH AND RATE tremulant optional extra. \star Gold-plated plug-in edge connexion. \star Complete fibreglass board (including iremulant if required) ONLY $3.7 \mathrm{in}, \times 4.5$ Very low power consumption.
$\underset{\text { PRICE, }}{\star}$ \& Ready-built, tested $\left\lvert\, \begin{gathered}\star \\ \text { for } \\ \text { S.a.e. please } \\ \text { full technical }\end{gathered}\right.$ and fully guarantecd. $\mathrm{DMO2} 2 \mathrm{I}$ (with tremulant) ONLY DMO2 (without tremulant) 212.25 .

Trade enquiries
SAJ110 7-stage frequency dividers in one 14 -pin DIL from almost any type of master oscillator including the DMO 2 (when 97 notes are available). Square wave oupputs may be modified to saw-tooth by the addition prive for pack of 12: 225.00 . S.a.e. please for data sheet.

LINEAR I.C.s

MFC 6040 $86 p$

CA3046 14-pin DIL LH0042C TOS CM3BON 14 -pin DIL MC1303L 14 -pin DIL MC1310P 14 -pin DIL MFC 8010
MFC 9020
MVR 5,12 or 15 Y TO3 NE561B 16 -pin DIL

SYNTHESISERS

We stock all the parts for the "Electronics Today International" synthesiser including all the P.C.B.s required and all the metalwork including a drilled and printed front panel for a truly professional finish. Some of the circuits in this briliant design are entirely original Independent authoritative opinions agree, the E.T.I. International Synthesiser is technically superior to practically all synthesisers available today. S.a.e. please for our detailed price lists.

WW-030 FOR FURTHER DETAILS

NEW
 LOW COST INSTRUMENTS

 643
FUNCTION
GENERATOR
f75 + £1.50 p.\&p.

+ VAT
Accurate Digital Frequency Setting $.01 \mathrm{~Hz}-1 \mathrm{MHz}$ Wide Range External Control of Frequency Triangie, Squarewave and Low Distortion Sinewave Outputs $50 \Omega+$ Simultaneous Outputs

744 COUNTER TIMER

 £65 + £1.50 p.8p. + VATMeasures Frequency, Period and Time 30MHz Frequency Range Sensitive, Protected FET Input

O.M.B. ELECTRONICS RIVERSIDE, EYNSFORD, KENT Tel FARNINGHAM (0322) 863567

WW- 026 FOR FURTHER DETAILS

DIOTESTOR IN-CIRCUIT TRANSISTOR TESTER

BRITEC LIMITED, 17 Devonshire Road, London SE23 3EN Tel: 01-699 8844 Telex: 896161

This is why theTWG501performs the fundion of a good generator

Voltage control sweep 1 decade linear 4 decades exponential

Fast rise time square<15ns with current sinking capacity for 5 TTL loads.

Trigger pulse

All seven outputs are

 simultaneously available with amplitudes constant over frequency rangeSize: $254 \times 121 \times 157 \mathrm{~mm}$
Wt: 2.2 kg

FEEDEACK INSTRUMENTS LTD

$y_{\text {cem }}$ Desim

 Electronic Design Specialists
NOW you can build our LUXURY F.M. STEREO TUNER
 Complete
 (see W.W. APRIL/MAY 1974)

As announced in advance last month, we can now offer a complete kit to build this superb design. The cabinet and chassis kit now available are up to the same high original design standards as the circuit design, and the same high quality of materials has been used. The metal work is in rustproof cadnium plated steel sheet, fully drilled and prepared. The front panel is in two tone gold and brown brushed anodised finish, while the drop over cabinet is made from high grade solid wood, finished in a light satin gloss varnish. The net result is a tuner of the very highest standards of performance and appearance.

Kits n	avail	Price	Postage
K1-4	All parts to build the main receiver board	£24.95	30p
K5-7	Complete stereo decoder with antibirdy filters	£9.95	30p
K8	A 4 way push button assembly for the function switching	£3.45	10p
K9	A 6 way pre-select push button unit, gold plated contacts, cermet trimpots, P.C. Board with meter drive circuitry	£14-14	10p
K10	A regulated power supply including mains transformer ($210-250 \mathrm{v}$).	¢5.82	30p
K11	Complete cabinet/metalwork set as described, including all plugs and sockets, mains lead, nuts and bolts, wire, etc.	E25.00	50p
Meter	An edgwise meter with frequency calibration to suit K9	f6.50	20p
K1-11	All above parts, package price PLEASE ADD V.A.T. TO TO	$\begin{aligned} & \mathrm{f} 85 \cdot 00 \\ & \hline \mathrm{AL} . \end{aligned}$	50p

Other individual parts available include the SL301B, SL3045, SBA750, MC1310P, Filter SFG10.7MA, etcAlso individual K1-7 prices available, other parts may be quoted on request. All parts and performance are guaranteed. Send a S.A.E. (9×4 preferred) for further details to :-

GETIT WHILE IT'S GOING

This is the first ever Wireless World Annual. It's got 140 pages of features covering all aspects of electronics and communications - new and established techniques, some practical, some theoretical - all written to the high standard you'd expect from Wireless World. Contents include : A General Purpose Audio Oscillator by L. Nelson Jones (a constructional project specially commissioned for the annual) ; Constructional Design for a Small Boat Echo Sounder by John French; Scientific Calculations with an Arithmetic Calculator by R. E. Schemel. There is also a reference section packed with useful information.
$£ 1$ from newsagents or $£ 1.35$ inclusive by post from the publishers.

Wireless World Annual 1975

To: General Sales Department, Room 11, Dorset House, Stamford Street, London SE1 9LU.
Please send me...............copy/copies of Wireless World Annual 1975 at $£ 1.35$ each inclusive. I enclose remittance value $£$ (cheques payable to IPC Business Press Ltd).
Name (plasse print)
Address, \qquad

Company registered in England No. 677128
Regd. office: Dorset House, Stamford Street, London SE1 9LU

JES AUDIO INSTRUMENTATION

Si451
$\mathbf{f 4 2 . 5 0}$
350μ Volts 20 ranges sine - square - RIAA prices plus VAT
J. E. SUGDEN \& CO. LTD. Tel. Cleckheaton (09762) 2501 CARR STREET, CLECKHEATON, YORKSHIRE
wW-016 FOR FURTHER DETALLS

wireless world annual 1975

COMMUNICATIONS •ELECTRONICS

THE MODERN WAY TO MEASURE TEMPERATURE
A Thermometer designed to operate as an Electronic Test Meter. Will measure temperature of Air. Metals, Liquids, Machinery, etc., etc. Just plug-in the Probe, and read the temperature on the large open scale meter. Supplied in zippered vinyl case with transparent front and carrying loop, Probe, and internal $1 \frac{1}{2}$ volt standard size battery. Model "Mini-On $1^{\prime \prime}$ measures from $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, price f 17.50 Model "Mini-Dn Hi" measures from $+100^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$, price $\mathbf{f} 20.00$ (V.A.T. EXTRA)
Write for further details to
HARRIS ELECTRONICS (LONDON), 138 GRAY'S INN ROAD, LONDON WC1X 8AX
('Phone 01-837 7937)

COUTANTL'SERIES
...more variable power than ever before with 16 types available from stock
With the addition of the new LQT Twin Unit power supply, offering double the voltage range, the Coutant ' L 'Series is ideally suited for the wide range of laboratory and general applications where continuously variable high performance power is essential.

Ask today for further details

Coutant Electronics Limited

Trafford Road, Reading RG1 8JR Tel: 073455391 Telex 847519
Coutant take the initiative in new technology

LB SERIES
LB 200: 0 to 50V@0 to 2A LB 500:0 to 30V@ 0 to 5A LB 1.000: 0 to 15V@ 0 to 10A PRICE $£ 109.00$

LA SERIES

LA 100: 0 to 50V @ 0 to 1 A LA 200: 0 to 30V @ 0 to 2A LA 400:0 to 15V @ 0 to 4A PRICE $£ 74.00$

LAB SERIES
LAB 100: 0 to $50 \mathrm{~V} @ 0$ to 1 A LAB.200:0 to 30V@0 to 2A LAB 400:0 to 15 V @ 0 to 4A PRICE $£ 48.00$
 -

LQT SERIES
LOT 100 : 0 to $\pm 30 \mathrm{~V} @ 0$ to $1 \mathrm{~A} \times 2$ or 0 to $\pm 30 \mathrm{~V} @ 0$ to 1A with slave $0 / P$ tracking master
or 0 to 30V@ 0 to 2A
or 0 to 60V @ 0 to 1A
LOT200: 0 to $\pm 15 \mathrm{~V}$ @ 0 to 2 Ax 2 or 0 to $\pm 15 \mathrm{~V} @ 0$ to 2A with slave $0 / P$ tracking Master
or 0 to 15V @ 0 to4A
or 0 to 30V@2A
PRICE $£ 92.00$

LQ SERIES

LQ 50: 0 to 50V (a) 0 to 0.5A La 100: 0 to 30V @ 0 to 1 A LD 200: 0 to 15V@0 to 2A PRICE $£ 42.00$
LM SERIES
LM 50: 0 to 30V @ 0 to 0.5 A LM 100; 0 to 15V@0 to 1A PRICE $£ 34.00$

HIGH POWER DC-COUPLED AMPLIFIER

\star UP TO 500 WATTS RMS FROM ONE CHANNEL \star DC-COUPLED THROUGHOUT
 \star OPERATES INTO LOADS AS LOW AS 1 OHM \star FULLY PROTECTED AGAINST SHORT CCT, MISMATCH, ETC.
 * 3 YEAR WARRANTY ON PARTS AND LABOUR

The DC300A Power Amplifier is the successor to the world famous DC300 which is so widely used in Industrial, and Research applications in this country. It is DC-coupled throughout so providing a power bandwidth from DC to over $20,000 \mathrm{~Hz}$. The ability of the DC300A to operate without fuss into totally reactive loads while delivering its full power, and maintaining its faithful reproduction of Pulse or complex waveforms has established the DC300A as the world's leading power amplifier. Each of the two channels will operate into loads as low as 1 ohm, and the amplifier can be rapidly connected as a single ended amplifier providing over 650 watts RMS into a 4 ohms load, and still providing a bandwidth down to DC. Below is a brief specification of the DC300A, but if you require a data sheet, or a demonstration of this fine equipment please let us know.

Power Bandwidth	DC-20kHz @ 150 watts $+1 \mathrm{db},-0 \mathrm{db}$.
Power at clip point (1 chan)	500 watts rms into 2.5 ohms
Phase Response	$+0,-15^{\prime} \mathrm{DC}$ to $20 \mathrm{kHz}, 1$ watt 8Ω
Harmonic Distortion	Below $0.05 \% \mathrm{DC}$ to 20 kHz
Intermod. Distortion	Below $0.05 \% 0.01$ watt to 150 watts
Damping Factor	Greater than 200 DC to 1 kHz at 8Ω
Hum \& Noise ($20-20 \mathrm{kHz}$)	At least 110 db below 150 watts
Other models in the range: D60	-60 watts per channel

Slewing Rate Load impedance Input sensitivity Input impedance Protection Power supply Dimensions Dimensions
$0150-150$ watts per channel

8 volts per microsecond 1 ohm to infinity
1.75 V for 150 watts into 8Ω 10 K ohms to 100 K ohms Short, mismatch \& open cct, protection $120-256 \mathrm{~V} .50-400 \mathrm{~Hz}$
19" Rackmount, 7" High, 94" Deep

10 naim audio MANUFACTURERS OFAUDIO EQUIPMENT
 moved.
 You can now find our factory and showroom at... II Salt Lane, Salisbury, Wilts, SP11DT The telephone number remains the same... SALISBURY 3746

A new service from one of the largest United Kingdom exporters of tubes and semi conductors

AEL • GATWICK HOUSE • HORLEY • SURREY • RH6 9SU
Telex 87116 . Cables. Aerocon Telex Horley . Telephone 029345353

Bishop's Stortford, Herts. Tel: 0279 56347. Telex: 81657 Jaylamps Stort.

Digitize that Fluid Input
 McLennan Engineering are pioneering in the field

 of digitized liquid delivery. The equipment illustrated is suitable for medical, veterinary, chemical and general laboratory applications.
DIGITAL SYRINGE TYPE DS110

Fluid pulse 1.0 or 10 micro litres
Number of pulses presettable from 1-50,000
Pulse rate $400 \mathrm{~Hz}-1 \mathrm{~Hz}$ or $\cdot 01 \mathrm{~Hz}$ in the case of frequency divider model
Digital 'fluid delivered' display monitors output at all times
External B.C.D. signais can programme the number of pulses
Remote multiple syringe facility
High reliability. Drive designed around Impex stepper motor system.

OTHER ITEMS MANUFACTURED BY

 McLENNAN ENGINEERING INCLUDE: Digital and analogue servo systems Peristatic pumpsProcess and machine tool control equipment Custom-built gearheads and actuator mechanisms Precision potentiometer drives.

If you have a problem in any of the above fields we shall be pleased to discuss your special requirements. Please get in touch - it costs nothing to talk.

WW-101 FOR FURTHER DETAILS
 Industrial and Transmitting Tubes to the Electronic Industry. Available Ex Stock at advantageous prices. Enquiries from
Agents and Importers welcome.

EDICRDN LIMITED

Redan House, 1 Redan Place, London W2 4SA Telephone: 01-727 0091/2 Telex: 265531 Cables: Edicron London W2
WW-O81 FOR FURTHER DETAILS

COLOUR TELEVISION SERVICING GORDON J. KING,

RTechEng, MIPRE, FSRE, MRTS, FISTC

This comprehensive book deals straightforwardly with the servicing of PAL receivers, using a minimum of mathematics.

It is divided into three sections: the first surveys the colour TV system as a whole, the second studies the elements involved (e.g. picture tubes, conveyance systems, chroma channels) and the third is devoted exclusively to servicing.

WW- 044 FOR FURTHER DETAILS

Principles and Culculations for Radio Mechanics Part 1

R. A. Bravery and A. P. Gilbert

Part of the Radio, Television and Electronics Servicing Series, this volume deals with the subject matter for Part 1 of the City and Guilds Radio Mechanics Course 222.
1974152 pp., illustrated 0408001194 £1.50

Rapid Servicing of Trunsistor Equipment 2nd Edition

Gordon J. King
This completely revised second edition takes account of recent developments such as capacitor-diodes, f.e.t.s and integrated circuits.
1973 180pp., illustrated $040800116 \times £ 1.90$

Rohotics

John F. Young
The object of this book is to present a comprehensive and orderly account of the principles and practice of robotics. It will provide a valuable sonrce of reference for research workers and those in related fields.
$1973 \mathbf{3 0 4}$ pp., illustrated 0408705222 £6.00
Obtainable through any bookseller or from
NEWNES-BUTTERWORTH
Borough Green, Sevenoaks,
Kent TN15 8PH. Tel. Borough Green 2247. 1

MORE AND BETTER PROGRAM MES

 from your TV/HI-FI by Turning Your Aerial TO THE DISTANT STATIONS OR FOR LESS BACKGROUNOBy simply dialling the direction, new programmes may be yours or in some areas you may get the choice of two or more different commercial TV stations.
If you spend $£ 100$ s on your Hi -Fi for a little extra you may improve the quality and number of stations.
The AR30 for normal-sized TV and Hi-Fi aerials is f27.65.
For large or stacked aerials, we recommend the AR40, using the same control unit, $£ 32.95$.
Buy direct from us, the importer with the experience and the after-sales service.
Despatched by SECURICOR with a 24-hour delivery (48 hours some parts of Scotland).

THE NEW NELSON-JONES FM TUNER

PUSH-BUTTON VARICAP DIODE TUNING (6 Position)
 ('WW' JUNE '73)

Exclusive Designer Approved Kits

[^5]Basic tuner module prices start as low as $\mathbf{£ 1 2 . 3 1}$, with complete kits starting at $£ 26.95$ (mono) + P.P. 65p. and of course all components are available separately.
Our low cost alignment service is available to customers without access to a signal generator. Please send large SAE for our latest price lists which details all of the many options and special low prices for complete kits. All our other products remain available.
PORTUS AND HAYWOOD PHASE LOCKED DECODER (W.W. Sept. '70). Still the lowest distortion P.L. decoder available. THD typically 0.05% (at Nelson-Jones Tuner O/P level)! Supplied complete with Red LED.
Price $\mathbf{£ 7 . 0 2}$ when bought with a complete $\dot{N}-J$ tuner kit or $\mathbf{£ 8 . 2 9}$ if bought separately (P.P. 21p.)
PLEASE NOTE. Existing tuners are readily convertible and kits/parts are available for this purpose.
TEXAN AMPLIFIER. We have designed the tuner case and metalwork to match the Texan amplifier (see photograph). Complete designer approved Texan kits are available at $\mathbf{£ 3 0 . 7 8}$ plus P.P. 65 p including Teak Sleeve.

NEW LOW COST STEREO TUNER Available as basic or complete kits

Basic stereo tuner $\mathbf{£ 1 5}$ post free. Basic mono tuner $\mathbf{E 1 2}$ post free. 6 position push button units with integral pots $£ 2.92$.
TYP. SPECIFICATION $2 \mu \mathrm{~V}$ for 30 dB S/N
Image rejection 40dB
IF rejection 65 dB
INTEGREX LIMITED, P.O. Box 45, Derby, DE1 1TW

No alignment required. Mullard LP1186 front end module used with Ceramic IF and IC amplifier. Push button tuning (6 position) with Interstation Mute, restricted range AFC, single LED tuning indicator, phase locked IC decoder, and complete metalwork and veneered cabinet. Complete with IC regulated PSU and full assembly instructions. (Mechanically identical to N-J Tuner.)

PRICE Complete stereo kit $£ \mathbf{2 8} .42$
Complete mono kit $£ 24.19$
P. \& P. 65 p

Quadraphony, Clocks and Counters

DIGITAL CLOCKS BY BYWOOD

Professional quality, 6-digit, 12 or 24 hour display
Beautifully finished in executive 24
FREQUENCY COUNTERS
Small, attractively-styled, up-to-the-minute design, $10 \mathrm{~Hz}-30 \mathrm{MHz}$-digit
LED display, also available as easy-build kit
High-frequency model $10 \mathrm{~Hz}-220 \mathrm{MHz}$ minimum, still a full 6 -digits and LED display
Also available as easy-build kit

QUADRAPHONY

CBS-SQ Decoder, incorporating MC1312
Kit available
Stereo Decoder, incorporating MC1310
Kit available

Deutch-Elac Cartridge STS $144 / 17$. List price $£ 17.90$
Quadraphonic Records supplied upon request.
Just arrived in time for Xmas-Top-Quality Koss Headphones.
Handy little aluminium boxes still available. Foulsham-tab. books available.
ALL PRICES ARE POST FREE
A FUIL TECHNICAL AND AFTER-SALES-SERVICE IS PROVIDED.
AS MANUFACTUAFRS AND DISTRIBUTOAS WE WELCOME TRADE AND EXPDRT ENQUIRIES.
COMMUNICATIONS CONSULTANTS . . INSTRUMENT DESIGNERS . . FOUR-CHANNEL SOUNO SPECIALISTS.

New items!

$. E 29.65+\mathbb{E} .37$ VAT

PRICES ON APPLICATION

E11 + 88p VAT E8+64p VAT E6.95+55p VAT E5.95+47p VAT E23.90 + E1.91 VAT £7.90+63p VAT Details and prices on application

PLEASE LET US KNOW AFTER 7 days if YOUR ORDER IS NOT ACKNOWLEDGED,

NAME

ADDRESS

WW-079 FOR FURTHER DETAILS

BUILD
 A PROFESSIONAL TELEVISION CAMERA

Complete kits available as designed by "Mullard" Includes a comprehensive construction manual, less tube and lens at $\mathbf{E 6 0 . 0 0}+$ VAT. Lens and tubes also available from stock. UHF Modulator Kits at £7.19 including P. \& P. \& VAT. Allows standard domestic TV to be used as monitor (Modulator also suitable for TV Tennis and other similar games).
Send 5 p stamp for illustrative brochure and price sheet.

CROFTON ELECTRONICS

124 COLNE ROAD, TWICKENHAM, MIDDLESEX TW26@S Tel. 01-898 1569

WW-203 FOR FURTHER DETAILS

elelitor

120,000 European electronics enthusiasts read Elektor. Now the first English edition is here, and British readers can join them.
Elektor is a fund of well thought-out and thoroughly tested projects, new ideas using modern electronic components, objective comment on new developments.

Try it.

If you like it, we'll give you this month's issue free*

This month
\dagger Motional feedback speaker circuit

+ Varicap tuned masthead preamplifier
t High quality amplifier
\dagger Distortion meter
\dagger One-chip MOS digital clock
t Sound effects for model railways
$\dagger \mathrm{N}$-position touch activated switch
\dagger Quadro systems

[^6]TRANSFORMERS

MAINS KEYNECTOR The saie, quick, connector for alectical
appliances, 13 Amp rating, fused wil connect a number of appliances quickly and sufely to the mairs, ideal for
testing. demonstrating, window displeys. testing, demonstrating, window displeys,
ett., Warning light, intarlocked to prevent etc., Warning Light, intarlocked to prevent Tride Price: £3-25. Post 25p.
-WATT CARBON FILM RESISTORS also available $\frac{1}{c}$ watt at $70^{\circ} \mathrm{C}$ E 12 range $10 \mathrm{~B}-1 \mathrm{M} \Omega .5 \%$ tol.
above 470 KO 10\% tol, at 95 p per 100 .

PLEASE ADD 8\% FOR VAT

Byre House, Simmonds Road Canterbury, Kent CT1 3RW

Tel: Canterbury (0227) 52436

Collect Wireless World Circards. And build a valuable dossier on
 Circards is a new and comprehensive system,

 circuit design. launched by Wireless World, to provide professional engineers and enthusiasts with valuable and up-to-the-minute data on circuit design. Data not available from any other single source.Each Circard is $8^{\prime \prime} \times 5^{\prime \prime}$ and shows a specific circuit, a description of the circuit operation; component values and ranges; circuit limitations; circuit modifications; tested circuits; performance data and graphs.

The double-sided format enables the Circard to be filed in standard boxes for easy reference. And the plastic wallet provided keeps the cards well-protected.

Circard sets come in wallets and cost $£ 1.50$ per set. A subscription for 10 consecutive

Subjects already covered by Circards

1. Basic active filters. 2. Switching circuits, comparators and schmitts.
2. Waveform generators. 4. AC Measurements.
3. Audio circuits: preamplifiers, mixers, filters and tone controls.
4. Constant current circuits. 7. Power amplifiers.
5. Astables. 9. Opto-electronics.
6. Micropower circuits. 11. Basic logic gate circuits.
7. Wideband amplifiers. 13. Alarm circuits.
8. Digital counters. 15. Pulse modulators.
9. Current differencing amplifiers-Signal processing. 17. Current differencing amplifiers-Signal generation. 18. Current differencing amplifiers-Measurement and detection. 19. Monostable circuits.
Subjects planned
Two-Transistor circuits, Multipliers and Dividers, Code converters, DC Amplifiers and Choppers, Amplitude modulation and detection, Transistor arrays. Sets 18-25 will be sent to subscribers separately after publication. We shall be pleased to receive your order.

To: General Sales Dept., IPC Business Press Ltd., Room II 1 Dorset House, Stamford Street, London SEi gLU

I
I Please send me set no(s)
@ $£ 1.50$ each \square^{*}
I I wish to subscribe to set no(s)
(a) $513.50 \square^{*}$

I I enclose cheque/money order for f
I *Tick as required/Cheques to be made payable to IPC Business Press Ltd.
Name
I
Address

Company registered in England. Registered address, Dorset House,
I Stamford Street, SEI 9 LU England. Registered Number 677128

It's New
 It's Versatile
 It's from Telequipment

Yes indeed!, yet another addition to Telequipment's range. This time it's a series of low cost, true dual beam oscilloscopes. Setting new standards for high performance, versatility and value, the 63 series will appeal to the most budget conscious of organisations.
Designed to meet the ever increasing demand for low cost 15 MHz oscilloscopes with plug-ins, the 63 series offers the choice of 5 different vertical amplifiers which include a TV monitor, a differential amplifier and 15 MHz general purpose plug-ins with or without signal delay.
Two main frames are available - the D63 with a conventional c.r.t., or the DM 63 fitted with a variable persistence storage tube, both accepting any combination of two from the five vertical plug-ins available. These plugins cover a wide range of requirements in single, dual and four channel operation, in addition to $X-Y$ applications requiring low phase-shift characteristics.
UK provisional prices (excluding VAT) $£ 310-£ 665$ depending on choice of main frame and plug-ins.
Write now for details and find out the full scope of Telequipment's 63 series. You won't be disappointed.

Telequipment gives you more scope for your budget

TELEQUIPMENT < 箨>
 Tektronix U.K. Ltd.,
 Beaverton House, P.O. Box 69, Harpenden, Herts. Telephone: Harpenden 63141 Telex: 25559

Sales and Service throughout the world

wireless world

Electronics, Television, Radio, Audio DECEMBER 1974 Vol 80 No 1468
 SIXTY-FOURTH YEAR OF PUBLICATION

This month's front cover shows part of a printed circuit of Sphericall, a Pye TMC 1.s.i. device for push-button telephone dialling.
(Photographer Paul Brierley)

IN OUR NEXT ISSUE (published December 18)

Electronics and oil. An inside view of the communications, telemetry and navigational aids used in drilling for North Sea oil

Silent switch for stereo-pair comparisons. Construction of an f.e.t electronic switch that meets stringent requirements

ibpa

Piess Asscocires
I.P.C. Electrical-Electronic Press Ltd

Managing Director: George Fowkes
Administration Director: George H. Mansell
Publisher: Gordon Henderson

Contents

471 New directions in sound
472 Charge-coupled devices by E. W. Williams
477 Rhombic u.h.f. TV serial by A. B. Starks-Field
479 December meetings
480 News of the month
Low-light camera
Electronic gas-cooker ignition
Broadcasting conference
482 Space news
483 Psychoacoustics of surround sound by Michael Gerzon
486 Integrated injection logic
487 Weather satellites ground station-2 by G. R. Kennedy
491 Project-digital clock and calendar- 3 by J. F. K. Nosworthy and N. J. Roffe
495 HF Predictions
496 Letters to the editor
Thyristor control of d.c. motors
Horn loudspeaker design
FM tuning indicators
499 WESCON 1974 convention by Aubrey Harris
503 Circuit ideas
Micropower amplifier
RIAA pre-amplifier
Electronic changeover switch
Novel power amplifier
505 Liquid-cooled power amplifier by I. L. Stefani and R. Perryman
507 Sixty years ago
508 Circards 18; current differencing amplifiers-3 J. Kinsler and P. Williams by J. Carruthers, J. H. Evans,
510 Capacitors: a survey by R. A. Fairs
515 World of amateur radio
516 New products
519 Real and imaginary by "Vector"
520 Editorial annual index for 1974
a94 APPOINTMENTS VACANT
al14 INDEX TO ADVERTISERS

Price 25 p (Back numbers 50 p)
Editorial \& Advertising offices: Dorset House, Stamford Street, London SE1 9LU.
Telephones: Editorial 01-261 8620; Advertising 01-261 8339.
Telegrams/Telex, Wiworld Bisnespres 25137 London. Cables, "Ethaworld, London S.E.1."
Subscription rates: 1 year, $£ 5$ UK and overseas (\$13 USA and Canada), 3 years, $£ 14$ UK and overseas ($\$ 36$ USA and Canada). Student rates: 1 year, $£ 2.50$ UK and overseas ($\$ 6.50$ USA and Canada), 3 years, $\mathfrak{£} 7$ UK and overseas (\$18.20 USA and Canada).
Distribution: 40 Bowling Green Lane, London EC1R ONE. Telephone 01-837 3636.
Subscriptions: Oakfield House, Perrymount Rd, Haywards Heath, Sussex RH16 3DH. Telephone 044453281 Subscribers are requested to notify a change of address four weeks in advance and to return envelope bearing previous address.

When flashover isthe danger

 Use EEV spark gaps.

Photograph courtesy of C.E.G.B

You name it. EEV spark gaps can stop it from happening.

Our range covers any voltage from $400-40,000 \mathrm{~V}$ and handles powers up to 15 kilo joules. Types are available in glass or ceramic envelopes.

EEV spark gaps are very rugged and will work in any environment, unaffected by dust, damp or atmospheric changes. They are also compact, consistently dependable and long-lasting.

We make 2 -electrode and 3 -electrode types, and the whole range covers many applications including:

Flash-over protection. Crowbar protection circuits. Protection from transient phenomena. Protection circuitry for s / c drives for thermionic tubes.

Capacitor discharge circuits. Firing circuits. Relaxation oscillator circuits for gas ignition equipment. Quench circuits.TIG welding equipment.

For data and any help you need, write or 'phone EEV at the address below.

Right, GXQ400, a crowbar protection device and
GXU40, for protection circuits in ground/air
communicationsequipment.

EEVand M-OV know how.

wireless world

New directions in sound

Editor:

TOM IVALL, M.I.E.R.E.

Deputy Editor: PHILIP DARRINGTON
Phone 01-261 8429

Technical Editor:
GEOFFREY SHORTER, B.Sc.
Phone 01-261 8443

Assistant Editors:
BILL ANDERTON, B.Sc.
Phone 01-261 8620
BASIL LANE
Phone 01-261 8043

Drawing Office:
LEONARD H. DARRAH

Production:
D. R. BRAY

Advertisements:

G. BENTON ROWELL (Manager)
A. PETIERS (Classified Advertisements)

Phone 01-261 8508 or 01-928 4597
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353

In the April 1958 issue we commented that the results of demonstrations of the new stereo discs were "practically indistinguishable from the master ...". Such a test has been applied on numerous occasions when demonstrating two-channel quadraphonic (which we take to mean surround sound using four loudspeakers) systems. Inventors of these systems deserve credit for their technical achievement in being able to mount A-B comparisons between four-track master tapes and their two-channel-processed versions; some of them are very effective. But is comparison with the master tape the best test of a system's capabilities?

Two things suggest it isn't. One is the relative inability of the master to do a good job in the first place. Acute sensitivity to listener position and-as Michael Gerzon points out in this issue-the instability of phantom images make one query the use of pan-potted masters as the starting point.

Possibly more important is compatibility. Whatever the quality of quadraphonic performance, records must have stereo and mono compatibility. Differences between two-channel systems, for instance, really amount to differing priorities as to the relative quality of mono, stereo and quadraphonic reproduction. And much of the current debate on the relative inerits of systems could be settled once it has been agreed whose interests to give what weight to. No one body in the record industry appears to have accepted responsibility for doing this.
This issue may well be settled by the broadcasters. Weighing the interests of a minority against those of a majority is something broadcast authorities ought to be used to. Given that a two-channel quadraphonic system must be perfectly mono compatible (not only because the majority of receivers in use are mono, but imperfect mono compatibility is a much more serious thing than stereo compatibility), one problem that poses itself is: how much degradation of the stereo image is going to be acceptable, in the interests of a limited quadraphonic audience?
This question is implicit in the detailed NQRC study*, now in progress. Another question being studied, fundamental to choosing a surround-sound system, is the effect of the number of transmission channels on quadraphonic performance-"directional fidelity" in particular. This is clearly of utmost importance in broadcasting, if only because it affects the magnitude of quality loss that must occur in delivering a compatible service.

What engineers should concern themselves with, it seems to us, is providing the best possible method of conveying sound direction, within the constraint of a limited number of channels, commensurate with agreed priorities in compatibility. (Given such a means, decisions about whether to use the medium for drama, ambience portrayal, pan-potted material or special effects such as "overhead" sound, then become the province of others.)

This is basically what Nippon Columbia Co have been doing in developing their new UD-4 system, with Peter Fellgett's NRDC-backed UK group thinking along the same lines but emphasizing a microphone technique that collects ambience in a uniform way.
It will be interesting to see how the NQRC weigh the various priorities and how relevant their priority mix, and hence their conclusion, is to other countries.

[^7]
Charge-coupled devices

1 -Introduction, early device structure and operation

by Ted Williams

Royal Radar Establishment

Abstract

Charge-coupled devices, which consist of chains of charge-storage elements along which charge packets are transferred, are already turning out to be the most significant advance in electronics since development of m.o.s. circuits. Usually associated with imaging in solid-state cameras, their unique performance characteristics, small size and high yield will produce far-reaching effects on signal processing techniques and in digital memories. After the four or five years since inception, advanced signal processors and memories are about to leave the drawing board. What gives the c.c.d. this position is discussed in a series of articles written by two leading authorities in the UK. This article describes operation of simple devices; a second article will outline fabrication processes and modifications to improve performance. Later articles will discuss applications.

The charge-coupled device has aroused considerable interest ever since it was first conceived and tested in 1970. ${ }^{1}$ Since then the interest has never slackened. This is borne out by the rapid commercial development of the c.c.d.

1973-first device offered for sale by Fairchild
1973-successfully built into simulated radar systems
1974-c.c.d. TV camera became available; and
1974-first complete signal processing system expected on the market.
Complete systems rather than individual devices will be offered for sale because of
their much higher profit potential. Nowadays, many products, of which the pocket calculator is one example, are being built as complete systems by one manufacturer. Selling devices no longer makes big profits unless you have cheap labour; and in Europe and America labour is not cheap. The profit expected from the c.c.d. systems business is enormous. One American estimate ${ }^{2}$ predicts that the annual systems business will be worth over $£ 100$ million.

This optimism explains why the Americans have put so much effort into c.c.ds. In 1973, for example, the manpower effort at companies like Texas Instruments and Fairchild was built up to an extremely large

team of scientists and engineers. With so many people working on c.c.ds the chances of success are very high. There is little doubt that in the seventies the way to succeed with a promising new device is to put big teams to work on it.

There are three reasons why there has been so much interest in c.c.ds:

- Cheap technology makes them very competitive.
- Flexibility: analogue, digital, and optical signals can be handled.
- Applications are extensive (see chart).

Fig. 1 compares the c.c.d. shift register element to the previous generations of m.o.s. and bipolar devices. From this it is clear that the c.c.d. element is much simpler and consequently much cheaper because no diffusions are required. This absence of diffusions also makes integrated circuit design much easier and, in particular, very cheap high area density arrays can be produced.

A second article will show how this basic technology does have some disadvantages, and how some process innovations have been adopted which overcome these problems. But to understand the basic operation this article is restricted to the first technology that was developed for the c.c.d. In spite of its limitations, this is still used for some of the simpler applications.

These basic applications, together with some of the more sophisticated systems applications, especially imaging, signal processing and memories, will form the subject of further articles.

Device structure
Anyone who is familiar with the metal-oxide-silicon transistor will have no difficulty in understanding the device structure and operation of a c.c.d., because

Fig. 1. Comparison of the c.c.d. shift register element with m.o.s. and bipolar elements.

Fig. 2. Cross-section of a complete two-bit p-channel c.c.d.
it can be thought of as a multi-gate m.o.s. transistor.

Fig. 2 shows the structure of a basic two-bit, p-channel, c.c.d. shift register. The silicon semiconductor substrate is doped n-type (with electrons as the majority carriers and holes as the minority carriers), whereas the source and drain diffusions are p-type (with holes as the majority carriers and electrons as the minority carriers). The oxide, or more correctly the silicon dioxide, which is grown on top of the silicon substrate is about 150 nm thick; and the aluminium, which makes up the contacts to the source, drain, the input gate, output gate, and the transfer electrodes, is 200 nm thick.

A negative-voltage reverse bias is applied via a load resistor to the drain diffusion. This bias makes the drain a sink for holes and a barrier to electrons. Holes are injected from the earthed source diffusion to the surface under the first transfer electrode ϕ_{1} by switching on the negative input gate voltage at the same time as the first clock transfer electrode negative voltage pulse. The time sequence of the input gate pulse and the clock pulses is shown in Fig. 3. This shows that as soon as the second phase voltage is switched on, ϕ_{1} is reduced to zero in a time defined as the overlap time t.

During t, the charge under ϕ_{t} will be transferred to the surface under ϕ_{2}. Similarly when ϕ_{2} begins to turn off, ϕ_{3} is turned on and the charge is transferred under ϕ_{3}. Then ϕ_{t} is switched on again and the charge moves under ϕ_{t} for the second time. At this point in time the charge has now shifted through one bit or three phases of the device. Referring back to Fig. 2, at the end of the second complete shift, or bit, the charge is transferred into the drain-the output of the device. The final charge transfer is accomplished either by switching on the output gate in phase with ϕ_{3} or by leaving a permanent regative d.c. bias on the output gate.

Fig. 4 shows a top-view photograph of a complete eight-bit p-channel c.c.d. made at the Royal Radar Establishment. Comparing this with Fig. 2 makes it easy to identify the source and drain diffusions, the input and output gate, and the transfer gates. The three-phase clock lines are linked together to minimize the number of contact pads and to facilitate the production of a complete depletion region right across the device as shown in Fig. 2. (Production of a depletion region is discussed later.) The oblong-shaped, heavily doped n-type channel stop diffusion prevents holes diffusing out from the transfer electrodes to the contact pads. Total device area or chip size was $1 \mathrm{~mm}^{2}$, and the transfer electrode size was $12 \mu \mathrm{~m}$

long (in the transfer directions) by $300 \mu \mathrm{~m}$ wide with a gap between the electrodes of $2.5 \mu \mathrm{~m}$.

Digital operation

Digital operation of a p-channel device is illustrated in Fig. 5. This shows the input signal applied as a square pulse to the input gate with the source earthed. The pulse generator which provides the
input puise is triggered by the clock generator through a divider board to give a "one" pulse in phase with ϕ_{1} followed by a series of n zeros. The output is studied by connecting an oscilloscope to the drain. The accompanying table shows typical operating voltages for a p-channel device.

Fig. 6(a) shows the digital output from a 64 -bit device. The value of n used for

TABLE Digital operating conditions for an eight-bit p-channel c.c.d*

Clock frequency	20 kHz to 5 MHz
Source	earthed
Input gate, $V_{/ G}$	-4.4 V
Output gate, $V_{O G}$	-6 V
Clock voltages	
$1, \phi_{2} . \phi_{3}$	-30 V
Drain bias	-10 V
Drain load	$1.2 \mathrm{k} \Omega$
*Silicon substrate,	n-type,
100 ohm orientation	50 cm, and

(a)
(b)
the input gate pulse was 128 and equal to twice the number of bits in the device. The clock phase voltage pulse is also shown. Theoutput pulse is shown delayed by 64 time intervals-bits ("range bins" in radar terminology)-from the input gate, square wave digital pulse.

Analogue operation

Fig. 6(b) top shows a sinusoidal analogue signal input that was applied to the same 64 -bit p-channel device whose digital operation was shown in Fig. 6(a). In this case the analogue signal is applied via a capacitor to a negatively biased source diffusion as illustrated in Fig. 7. As with digital operation shown in Fig. 5, the channel stop diffnsion is earthed. But in the analogue case the input gate has a d.c. bias of about -5 V . The outpnt is observed on an oscilloscope connected via a capacitor to the drain. The bottom part of Fig. 6 (b) shows the delayed time quantized ontput of the analogue signal.

More details will be given abont the operation and the nse of the c.c.d. as an analogue delay line in a later article when radar applications are discussed.

Digital testing

Testing new devices for c.c.d. action is normally carried out digitally. The same circuit that was used in Fig. 5 to show digital operation can also be used for digital testing. Using this test set-up the digital characteristic of the device can be rapidly obtained by plotting the output from the drain, $V_{\text {out }}$, as a function of the input gate voltage, $V_{I G}$, for a series of constant values of the d.c. voltage applied to the output gate, $V_{\text {OG }}$. Fig 8 shows the transfer characteristic for the eight-bit device pictured in Fig. 3. As the inpat gate voltage is gradually increased a critical voltage is reached at which the devices switch on and this critical voltage is called V_{T}, the threshold voltage of the device. For the device shown in Fig. 8 V_{T} was $-3.8 \mathrm{~V} ; V_{O_{G}}$ must also be set above this voltage, V_{T}, or the device will not operate. As $V_{I G}$ is increased above V_{T} the output increases until V_{S}, the saturation voltage, is reached. Above V_{S} no further increase in output occurs; V_{S} does not vary for output gate voltages above V_{T}. The output from the drain does vary with the output gate voltage and for

Fig. 3. Input gate and the clock pulse time sequence; t is the overlap between clock phases.

Fig. 4. Eight-bit p-channel c.c.d. made at $R R E$.

Fig. 5. Digital test set-up for a p-channel c.c.d.

Fig. 6. Digital input and delayed output from a 64-bit c.c.d. compared to clock waveform, (a). Analogue input and output for the same device, (b). Nate that analogue output is quantized in time.
the device shown it reaches a maximum for output gate voltages in the range -6 to -8 V .

Understanding the threshold voltage

To understand the threshold voltage consider what happens when a voltage is applied to the metal gate electrode of an m.o.s. structure, Fig. 9(a) shows a plot of the charge density $\rho(x)$ against distance x through a cross-section of an m.o.s. structure without any voltage applied to the gate, that is $V_{G}=0$. The semiconductor is n-type and the interface between the semiconductor and the oxide occurs at $x=0$ on the diagram. The charge trapped at the surface states, $Q_{S S}$, is shown schematically as a block of positive charge of density, $\rho(x)$, lying on the oxide side of the semiconductor-oxide interface. This is because the majority of these surface states come from positive ions in the oxide and the maximum number of these ions are found just inside the oxide. Just as in a capacitor, when you apply a positive voltage or charge to one plate of the capacitor, an equal and opposite charge is induced on the other plate, so when a positive charge is present on one side of the semiconductor-oxide interface an equal and opposite negative charge must balance it on the other side of the interface. In the last case, as shown in Fig. 7(a), $Q_{S S}$ is balanced by Q_{A}, a contribution of negative charge (electrons) from the n-type semiconductor in which the electrons are the majority carrier. The Q_{A} charge is referred to as the accumulation layer because it builds up or accumulates as the surface state charge increases in the oxide during and just after the growth of the oxide on the semiconductor. Under accumulation conditions:

$$
Q_{S S}+Q_{A}=0,\left(\text { for } V_{G}=0\right) \text {. }
$$

Now, to move on to what happens when a negative voltage is applied to the gate. As this negative voltage increases, the electrons in the accumulation layer are repelled and gradually the accumulation layer is lost. Further increase in negative gate voltage after the disappearance of the accumulation layer results in further negative charge being repelled from the semiconductoroxide interface. This produces a depletion region, as shown in Fig. 9(b). Charge Q_{D} due to the depletion region is shown as positive because it has resulted from the removal of electron majority carriers. The depletion region is depleted of all charge -both electrons and holes. (The depletion region in an operating c.c.d. normally extends all the way from the source to the drain, see Fig. 2.)

Further increase in the negative gate voltage results in attraction of positive holes to the interface. The surface of the silicon has now changed from being dominated by electrons as in Fig. 9(a) to one dominated by holes and is therefore said to have inverted from an n-type surface to a p-type one. Holes can now pass along this p surface channel. Hence an m.o.s. device, or in particular a c.c.d., that is produced on an n-type semiconductor is called a p-channel device. The size of the

Fig. 8. Transfer characteristic of a c.c.d. Output voltage from drain is plotted against input gate pulse amplitude for a series of output gate voltages.
$V_{O G}$

gate voltage determines the hole density in the channel region and so this means that the gate voltage controls or gates the channel current.

The threshold voltage,' V_{T}, is the voltage required to produce inversion or current flow in the channel. It is usually defined as the voltage required to produce a current flow of $1 \mu \mathrm{~A}$, because it is well above the leakage current (or noise) levels which are usually of the order of nanoamperes. V_{T} for a p-channel c.c.d. normally lies in the region of 1.8 to 4.0 V . For n-channel devices, however, the threshold is usually below a volt and a second article will show how the properties of n - and p -channel c.c.ds compare.

Surface states

Surface states act as traps for electrous and holes travelling along the surface of the semiconductor and they have a large effect on the operation of a surface channel c.c.d., such as the one described previously.

Surface states arise in many different ways. Some of the major causes of surface states are:
-impurity ions in the oxide
-defects at the semiconductor surface due to impurities, or defects in the crystal structure of the semiconductor, or a combination of both
-absorbed impurities on the surface of the semiconductor.

Fig. 9. Schematic diagram of the charge distribution in an m.o.s. structure for three cases: (a) zero volts on the gate, (b) depletion, and (c) inversion.

The surface states which arise from positively charged impurity ions such as sodium in the oxide are known to be the major cause of surface states in the case of c.c.d. Some of these ions are trapped at the surface when the oxide is grown on the semiconductor during c.c.d. manufacture. Others remain in the oxide very close to the interface, and then the charges trapped on these states drift to the surface when the device is switched on. The negative voltage that is applied to the gate drives the positive charge to the interface, and the time taken by the charge to move to the interface is usually seconds or minutes so these surface states are referred to as slow states. Slow surface states can often be observed in poorquality devices. A certain warm-up time of a few minutes is required before the device reaches a maximum due to the electron trapping of these slow states. Once the trapping slows down to its equilibrium level the device reaches a maximum.

Fast surface states are those which can trap charge in a few milliseconds or less. These fast states arise from all the three sources discussed above and they control to a large extent the high frequency limit of operation of the device.

Charge transfer efficiency

The transfer efficiency gives a measure of the efficiency of charge transfer in c.c.d. It is the most critical parameter and much more important than the threshold voltage.
The charge transfer efficiency is defined as the fraction of the charge transferred when a charge packet moves from under one clock transfer gate electrode to the next. Charge loss can be considered as having two contributions:
-the fractional charge lost during the transfer across the gap between the electrodes, q_{T} (or α)
the fractional charge left behind under the electrode, the so-called residual charge, q_{R} (or ϵ).
The charge transfer efficiency, η_{T}, can therefore be written as
$\eta_{T}=\left(q_{N} / q_{n-j}\right) 100=\left(1-q_{T}-q_{R}\right), 100 \%$, where q_{n} is the charge under the nth electrode and q_{n-1} is the charge under the $n-1$ electrode. The fractional charge lost during transfer, q_{T}, depends on -surface state density
-width of the gap between the transfer electrodes
-strength of the input signal; that is, the amount of charge injected into the device from the source
-speed of transfer or the frequency of operation of the device.
The residual charge, q_{R}, is a function of the above and also on the length of the transfer electrode.

For optimum transfer efficiency q_{R} and q_{T} must be minimized. Only when the transfer efficiency is high enough will the c.c.d. meet the stringent requirements of most of the systems applications for imaging and radar.

To minimize both q_{R} and q_{T} the surface state density must be kept as small as possible by using careful selection of the silicon material that is used for the devices and the silicon processing that is carried out. A second article will outline some of these processing techniques and also discuss the buried-channel c.c.d. in which the charge transfer is carried out under the surface of the silicon so that surface states are avoided altogether.

For the surface-channel device, the gap width must be kept to $3 \mu \mathrm{~m}$ or below to give a reasonable transfer efficiency and must be maintained across the device. In addition, if the gap can be made less than $1 \mu \mathrm{~m}$ and the electrode size can be kept to $10 \mu \mathrm{~m}$ or below, operation in the frequency range 1 to 10 MHz becomes very efficient. New surface-channel technologies have been developed to produce very-small-gap and gapless devices and will be discussed in a later article.

The input signal strength is very important when considering operating efficiencies. If it is too small, the transfer efficiency is very low because surface state trapping dominates. For this reason most c.c.ds are operated in the fat zero mode.

Fig. 10. Variation of optical transfer efficiency with voltage on input gate for an eight-bit p-channel device. Dashed line shows electrical transfer characteristic for the same device.

In this mode a constant trickle of charge or level of channel current is maintained either by not allowing the input gate voltage to go below V_{T}, or by exposure of the whole of the device to a constant light level so that a small number of carriers are optically generated in the channel. Of these two, the first is most commonly used where the signal is superposed on the small channel current provided by the offset d.c. bias on the input gate.

Signal strength must also not be too large and should be kept well away from output level saturation. This is because near saturation, thermally generated carriers and any fluctuations in device geometry, can result in the overflow of carriers from a potential well under one transfer electrode to an adjoining well. As a result the signal is smeared out and, in the case of analogue operation in particular, vital information can be lost.

Dependence of transfer efficiency on signal strength is clearly illustrated in Fig. 10 where the full line shows the transfer efficiency plotted against the voltage on the input gate. (The dashed line shows the output voltage seen on the oscilloscope using the circuit shown in Fig. 5, also plotted against the input gate voltage.) The centre of the flat plateau of constant transfer efficiency coincides with half the maximum output signal and this represents the optimum working condition.

Transfer efficiency values shown in Fig. 10 were measured with a scanning light-spot technique ${ }^{3}$. This method is only one of several different measurement techniques ${ }^{3,4}$ that have been used for measuring transfer efficiency. The trailing pulse technique is the simplest of these. In this case the ratio of output pulse to the next ϕ_{2} trailing pulse is used to calculate the transfer efficiency. This technique has the advantage that it needs no extra equipment and can be easily calculated at the same time as a new device is being tested.

In the same way, none of the sophisticated technologies that have been developed for the c.c.d. is perfect for a wide range of conditions. But the currently available technologies to be described in another article do improve the potential of the c.c.d. and make it look a very attractive proposition for many applications.

Acknowledgement This article is published with the permission of the director of RRE. Figs. 2, 3, 4 and 8 appeared in an article published by the Institute of Physics in J Phy D, August 1974.

References

1. Boyle, W. S. and Smith, G. E., Bell Systems Tech J, vol. 49, 1970, p. 587. Amelio, G. F., Tompsett, M. F. and Smith, G. E., Bell Systems Tech J, vol. 49, 1970, p. 593.
2. Gilder, J. H., Electronic Design, vol 25 , Decermber 6, 1973, p. 32.
3. Williams, E. W., et al. J Phys D: Appl Phys, vol. 7, 1974, L4.
4. Brodersen, R. W., et al. CCD Applications Conference, San Diego, 1973, p. 169. Vanstone, et al. Solid-State Electronics, to be published.

Rhombic u.h.f. TV aerial

Design for loft installation uses coaxial-to-wire impedance conversion device

by A. B. Starks-Field, B.Sc., M.I.E.E.

The account which follows was triggered by a chain of circumstances that originated in the motor industry. Because of the increasing level of ignition interference from many of the modern cars (manufacturers, please note!) the time came when I had to do something about the picture on my 17-year-old home-constructed 45 MHz television receiver.

A preliminary examination showed that the flywheel synchronizer locking was no longer able to cope. Because of the set's age I decided to pension it off in favour of a 600 MHz receiver, and this in turn raised the question of whether to build or to buy. Being preoccupied with other matters, I decided to buy and put up with the inferior sound reproduction.
The choice of aerial was the next query to raise its ugly head, and I say "ugly" advisedly, becanse a roof-top Yagi is not a thiug of beauty; neither is it cheap, particularly if one has to pay someone to erect it. The alternative was a loft antenna of some kind; this was attractive, for although I have reached the years of discretion when roofclambering has lost its savour, I am still agile enough to reach the loft where I have a power point and can work in comparative comfort. The indoor aerial has the further advantages of being protected from wind and weather and there are no swaying feeders ultimately to break.

The next question was, which type to use? My local (booster) BBC station radiates a horizontally polarized signal and (according to a field-strength contour map) provides better than 10 mV per metre in my area. There are, however, notorious "holes" in the district and, taking this and the opacity of the roof into consideration, I judged that I should need an aerial of some significant gain and directivity; but what?

In my amateur days (G6YG) in the late 1930s my particular pipedream was to have a shack at the hub of a set of rhombics all pointing in the most useful directions. This remained only a dream because of the relatively small garden space available, but the desire to use a rhombic bas always remained. Well, why not do so? The loft is large enough to accommodate one about 11 wavelengths long and pointing towards the local BBC and IBA stations.

According to Terman ${ }^{1}$, if a rhombic has legs of six wavelengths each it has a gain of

65 times (approximately 18 dB) and a horizontal beamwidth null-to-null of about 22°, and about twice this in the vertical direction. Yes, this should be satisfactory for my requirement and because of its lack of resonant components it performs reasonably well to less than half its optimum frequency, so there is no bandwidth limitation.

However, we are not there yet. We always thought of rhombics as terminated with a 600Ω resistor and using a parallel wire feeder of 600Ω characteristic impedance (c.i.). The television receiver would be required to work with a 70Ω c.i. cable and in any case a 600Ω c.i. feeder would be a difficult one to accommodate up the walls and into the loft. A further point is that at this impedance, using 18 swg wire, the required spacing is of the order of four inches which is a significant part of a wavelength and so the feeder is likely to receive or radiate. No, some form of coaxial-to-wire impedance conversion was required.

The first thing which came to mind, rather reluctantly because of its resonant quality, was a quarter-wave matching section. Calculation indicates that if one wishes to match 70Ω to 600Ω the c.i. of the matching section has to be about 200 2 . Looking up the spacing indicated in the $W \cdot W$. Radio Charts for this impedance one finds that it is very small, as shown roughly to scale in Fig. 1.

Now at 600Ω c.i. the spacing of 18 swg wires (as has already been said) is of the order of four inches and the quarter-wave matching section requires to be about $6 \frac{3}{4}$ in long, with the result shown in Fig. 2. The wires connecting the matching section to the
600Ω line-which may, in fact, be the start of the rhombic aerial-are a significant length in terms of a wavelength, so that this scheme clearly will not work. Are there then any other ways of achieving this transition?

Going back to amateur days again, Fig. 3 shows a very popular aerial which we used to call a Y-matched dipole. The significant feature about this one is that the 600Ω feeder was brought to a point below the aerial where it then spread out to two points A and B , where connection was made to a halfwave radiator.

The selection of points A and B are such that the aerial presents an impedance which corresponds to the c.i. of the feeder wires at the spacing of AB , probably something of the order of 1000 . The Y section is thus a fiared transition between the 600Ω line and 1000Ω and because of the continuous gradation of ci. does not produce a mismatch and therefore no standing waves. As this form of matching works from 600Ω to 1000Ω, then it seemed to me that in principle it should also be effective from 70Ω to 600Ω.

I have no doubt that some of my mathematically minded colleagues could produce a rigorous proof, but for the moment let me suggest a mechanism whereby a true impedance transformation is effected and at least gives an approach for the mathematician. Fig. 4 shows a series of lumped elements of part of the transition where C_{t} represents the capacitance per unit length and L_{1} the inductance per unitlength before the flare. $C_{2}, L_{2}, C_{3}, L_{3}$, etc., are all parts of the flare where C_{n} progressively becomes less as the flare progresses while L_{n} pro-

Fig. 1. Wire spacing for 200Ω characteristic impedance.

Fig. 2. Matching a 70Ω coaxial cable to a 600Ω wire feeder; the spread is significant compared with the wavelength.

Fig. 3. The Y-matched dipole.
gressively increases. One can imagine an established current in L_{l} charging C_{i} at the expense of the magnetic energy in L_{r}. As the voltage builds up in C_{I} current starts to flow in L_{2} which in turn starts to fill C_{2}. This is the basic process of the running wave. Now since C_{2} is less than C_{1} and L_{2} is greater than L_{1} they will pass the same amount of power at higher voltage and less current. Likewise with C_{s} and L_{3}, so that as the wave progresses it will acquire more voltage and less current. By the time it reaches the 600Ω spacing of the flare the impedance transformation will be complete and the wave may be launched in a 600 n line. This, of course, is not the whole story because if the flare is short compared with a wavelength it does not work. Mathematicians, please note that I think the transition must at least be $\frac{1}{4} \lambda$ and preferably longer but I have made no attempt to prove it. Of course, this sort of transition must take place on the rhombic aerial itself as the wires spread out, but more of this later. The above is, of course, argued in terms of transmission but the reverse is true in reception.
Thinking in practical terms, then, what sort of flare is needed from the 70Ω coaxial cable? Without fussing about minimum size it appeared to me that the desirable arrangement would be first to arrange a transition from the semi-solid dielectric coaxial cable to a convenient diameter of airspaced couxial, followed by some sort of graded transition to an open-wire line. This is because nature has decreed that enormous spacings are required to produce a coaxial of c.i. higher than 150Ω and negligible spacings are required for an open-wire line of the same impedance. The simplest way to do this was to taper the polythene inner insulation down to zero thickness and at the same time to flare the outer in some way to the diameter corresponding to about 150Ω c.i. From this point onwards the flare would be cut away to a tapered point where it would be joined to one wire of the rhombic. The inner would, of course, be extended to join the other wire.
I discussed this with a colleague and, jointly, we arrived at the design shown in Fig. 5. We then each built a rhombic and its transition into our respective lofts. I should add that my collaborator is in a locally notorious signal-strength "hole", where even diffracted signals are loth to reach.
The flare of the transition is made of pieces of copper foil cut to form a cone which has a diameter of 0.6 in at about 4 in from the start. Beyond this the copper cone is cut away in a gentle curve to a point about 10 in from the start. (Provided that sharp discontinuities are avoided, the dimensions are not critical.) The polythene inner insulation of the coaxial cable is tapered down to zero thickness at about 2 in from the start of the cone; thereafter, the bare wire emerges to a suitable anchoring point (see later). The wire should run through the middle of the cone, but it was found that this requirement is not ultra-critical (a 10% deviation either way made no significant difference) and the wire is sufficiently selfsupporting to remain in situ without spacers. The complete device is mounted on a Per-

Fig. 4. Lumped constant representation of a transmission line.

Fig. 5. Coaxial to open-wire fiare.

Fig. 6. Construction of the coaxial to open-wire flare shown in Fig. 5.
spex cradle which keeps the structure rigid and provides means of anchorage for the connections. As already stated, one end of the rhombic is connected to the end of the tapered copper cone, while the other end connects to the central bare wire. My colleague, being more finished-productconscious than I am, decided to fit a connector at the coaxial end, whereas mine is simply joined directly to the down-lead to the receiver. Fig. 6 is a photograph of his version.
The next problem was how to check it and see if it would work. We had available to us a Rohde and Schwarz Polyskop which covered the frequency range up to 1000 MHz and is a combined frequency sweep generator and cathode-ray display. Basically this instrument feeds the output
terminal from a high impedance source, measures the voltage amplitude of the signal at this point and displays the result against a timebase synchronized with the frequency sweep. Thus it can measure the effective impedance of any device connected to its output.
We therefore decided to connect a short length of coaxial cable to our flare, terminating it with a 560Ω resistor, and in effect measure the imput impedance of the coaxial cable. Over the range of freqnencies where the termination is correct, the Polyskop trace shonld be level, and if not, the trace should show a series of undulations where the frequencies corresponded to those at which the cable is a multiple of quarter-wavelengths long. As would be expected at low frequencies the standing
wave ratio, which is in effect what the test is showing, was bad, but over the range of about 550 to 680 MHz it was only $3: 2$ which is quite satisfactory. We found this was little different from the cable terminated with a standard 70Ω load. However, the surprising thing was that it started to increase again above this frequency.

It then dawned on us that the fault lay not in the flare but in the terminating resistor which, together with its end wires, was too long. Standing waves were being built up on it, resulting in various values of effective terminating impedance.

On the entry to the rhombic aerial this, of course, is of no consequence as it is simply a continuation of the flare, but it suggests that the spacing at the far end should be reduced to about $\frac{1}{2}$ in which is the length of a resistor and is sufficiently small compared with a wavelength. The termination would then be about 400Ω, the nearest preferred value being 390 .

However, by the time these conclusions were reached my own aerial was installed and it is unfortunate that I have left the end spacing at about 4 in and terminated with 560Ω but this is clearly not critical.

Let me say at this juncture that so far I have made no attempt to explore the transition v.s.w.r. situation in greater depth, as the construction of the arrangement described was essentially a practical exercise and an unavoidable interruption to my other electronic interests! One day I hope to experiment, but in the meantime some interested reader might care to take the matter further.

One possible approach is shown in Fig. 7. This consists of a flare from 70Ω to 600Ω spacing, followed by a length of 600Ω line and then a reverse flare to the terminating resistance. I suggest that the terminating flare should be brought down to about 300Ω spacing and terminated with two 150 Q resistors as shown.

The whole could then be tried on a Polyskop or some other device which permits the checking of the v.s.w.rs. If any reader happens to live in an area where there are two transmitters on reciprocal bearings, a flare could be fitted to both ends of the rhombic and a coaxial lead brought down from each. In theory the lead which is out of use should be terminated in 50Ω or 70Ω

Fig. 7. Improved arrangement for checking fare matching.

Fig. 8. Rhombic aerial dimensions. Note that n does not have to be an integer.
as the case may be; however, the loss on an open-circuited coaxial may be enough to terminate the aerial adequately.

Oue further point that may occur to readers contemplating building this device is that here we have the classic situation of a balanced aerial being fed with an unbalanced feeder and is therefore one in which squint might be introduced.

The only contribution I can make at the moment is a practical comment. After installation I discovered that the local 600 MHz transmitters were farther east than I had thought and that an additional error had put them just about on the edge of the expected beam. (So much for being in a hurry!) However, subsequent correction to the geographical line-of-sight made only a slight improvement in the original received signal. My knowledge of field theory is somewhat limited, but I would have thought that, because of the large voltage transformation to the point of maximum spread (12 or $14: 1$), squint is unlikely to be significant. The phase considerations are unaffected and my present belief is that the capacitance between the lines and nearby objects (wiring conduit, water pipes, etc.) would mask any basic effects. However, it would be interesting to explore the field with a directional probe and examine all the perturbations in orientation.

But enough of theory. The more practical will want to know something of received picture quality. In fact this was eminently satisfactory, all three local transmissions (two BBC and one IBA) coming in clearly with no noise either on sound or on vision. Here, perhaps, I should add that my own experience does not in itself settle whether it is a good aerial or not, firstly because I am probably in a fairly strong region of field strength and secondly because I had no previous u.h.f. aerial with which to compare it. My colleague, however, is in a field strength "hole" and has hitherto used a log periodic aerial previously described in Wireless World ${ }^{2}$. This, at his location, gave a very poor signal-to-noise ratio. The rhombic on the other hand, has given a startling improvement; an estimated gain of about 10 dB signal-to-noise.

I have not dealt with the construction of the rhombic itself as there is plenty of literature concerning the design of such aerials. Those unfamiliar with such a device will see from Fig. 8 that the construction is extremely simple and eminently suitable for medium-sized lofts. Larger aerials still are obviously possible where space permits and may be desirable in extreme fringe areas. In regions where the signals are vertically polarized, the aerial should, of course, be turned over on its side.

In conclusion, I should like to thank my colleague Mr R. A. Tyler for his help and also the Editor of W.W. for his valuable suggestions concerning the presentation of this article.

References

1. Frederick E. Terman. Electronic and Radio Engineering. McGraw Hill.
2. M. F. Radford. "Logarithmic Aerials for Bands IV and V", Wireless World, Sept. and Oct., 1964.

Meetings

LONDON

2nd IEE-"Early development of the television camera" by Prof. J. D. McGee at 17.30 at Savoy Pl., WC2.
4th IEE-"High power radar studies of the ionosphere" by Dr. J. V. Evans (Tenth Appleton Lecture) at 17.30 at Savoy PL., WC2.
5th RTS-"The Canadian domestic communication satellite system" by R. F. Chinnick (Shoenberg memorial lecture) at 19.00 at the Royal Institution, Albemarle St., W1.
9th IEETE/Inst. MI-"The applications of electronics to the design and testing of automobiles" by T. R. Aston at 18.30 at the IEE, Savoy PL., WC2. 10th IEE-"Electroluminescence" by A. Vecht at 17.30 at Savoy PI., WC2.

10th IEE-"High power stepping devices" by Prof. P. J. Lawrenson and Prof. R. J. A. Paul at 17.30 at Savoy Pl., WC2.
11th IERE-Colloquium on "The graduate electronic engineer in Britain and Europe" at 10.00 at 9 Bedford Sq., WC1.
11th IEE-"Some applications of digital techniques to television broadcasting" by F. H. Steele at 17.30 at Savoy P1., WC2.

12th IEE/R.Ae.S.-Symposium on "The application of digital avionic systems in aircraf" at 9.45 at the Royal Aeronautical Society, 4 Hamilton P1., W1.
13 th IEE-Colloquium on "Techniques at high voltages" at 10.30 at Savoy P1., WC2.
16th IEE-"Exposition of quadraphony" at 14.30 at Savoy PI., WC2.
17th AES-"Audio oscillators" by P. J. Baxandall at 19.15 at the IEE, Savoy Pl., WC2.
18th IERE-Colloquium on "Electronics and the motor vehicle" at 10.00 at 9 Bedford Sq., WC1.
18th IEE-Colloqrium on "Integrated circuits for analogue functions" at 14.30 at Savoy Pl., WC2.
18 th IEE-"Transformer multiflow hottest-spot rating proposed standard specification" by E. T. Norris at 17.30 at Savoy Pl., WC2.

BRIGHTON

12th IEETE-"Simply and or not-a review of elementary logic gates" by E. Keeler at 19.30 at Royal Albion Hotel, Old Steine.

EXETER

5th IEETE-"Computers and programming" by L. M. Goddard at 19.30 at Exeter College, Hele Road

GUILDFORD

4th IEE-"Nuclear power-its promise and problems" by H. H. Gott at 19.30 at the University of Surrey, Stag Hill.
HULL
11th SERT-"Trinitron tube" by speaker from Sony (UK) Ltd at 19.30 at Hull College of Technology.

LEEDS

12th IEETE-"New developments in integrated environmental design" by R. D. Parker at 19.00 at Kitson College, Cookridge St.

MAIDSTONE

2nd IEE-"Electronic aids to night vision" by Dr. P. Schagen at 19.00 at S.E.E.B. Maidstone Dist. Offices, Parkwood, Sutton Road.

READING

5th IERE/IEE-"The application of electronics in telephone exchange switching" by F. W. Croft at 19.30 at the J. J. Thomson Physical Laboratory, University of Reading, Whiteknights Park.
Tickets are required for some meetings: readers are advised therefore to communicate with the society concerned.

Low-light camera

The determined intruder is not easily defeated, but the use of invisible "light" with television cameras must pose a pretty problem to him. We were recently shown a system developed by ADT which uses radiation at a wavelength of 1.1 microns (effectively total darkness), or a slightly more visible 0.8 microns, to irradiate the scene, reflected radiation being picked up by a silicon diode array.

The use of the diode pick-up tube is claimed to offer advantages over the conventional method of a vidicon camera used with an image intensifier, the main one being that the signal-to-noise ratio is markedly improved. As the diodes have their peak sensitivity at the radiation wavelength used, a very small aperture can be used, with a consequent increase in the depth of field. Readers may remember that a similar pick-up tube used on a normal moon-shot suffered a dismal fate when it was accidentally aimed at the sun. ADT
have fitted an automatic iris which varies the aperture from f 1.2 to f 360 sufficiently rapidly to protect the diodes against burn-out.

Apart from the obvious security value, the system is expected to find application in hospital surveillance, where the absence of visible lighting would be of great benefit to patients.

Quis
 custodiet

The Design Centre in Haymarket, London will be reconsidering their security arrangements during the next few days, following the disappearance of one of their "high-technology" displays. An electronic transmitting key and control unit made by security experts Distloc, and used for remotely locking and unlocking strong doors, van doors, cash registers, petrol pumps etc, have been taken from their display case. Distloc promise enough flashing lights and clanging bells around any future exhibits to send any prospective purloiner on a hallucinatory trip.

Electric gas cookers

Electronic spark ignition units are not new, but the application of electronics to spark ignition for gas appliances is relatively recent. Ignition for fuel gases, unlike petrol vapour, demands a high degree of efficiency. This can be provided by the capacitor discharge principle. One of the major advantages of using these electronic spark ignition units is that ordinary pilot lights are rendered unnecessary. In California, legislation aimed at saving natural gas by the elimination of gas-fuelled pilot

The low-light television surveillance system by Electronic Protection Services, Hillgate

 House, 26 Old Bailey, London ECA, a subsidiary of ADT of America (see accompanying news item).
lights has recently become law. During the preparation of the bill, it was estimated that between 10 and 15% of natural gas used by domestic appliances throughout the state was consumed by pilot jets.

Plessey Windings has received a substantial order from the Caloric Corporation, Topton, Pennsylvania, USA for the supply of electronic spark ignition units. The Caloric Corporation, one of the major cooker manufacturers in the USA, is incorporating the units in its latest gas cookers.

Energy conversion alternatives

Methods of producing electrical power from coal will be assessed by a NASA industrial team in an 11-month study. Development and operating costs and the impact on the environment will be compared for a variety of systems using coal or coal-derived fuels. Conventional fossilfuelled power plants operate at efficiencies of up to 40%, but greater efficiencies are possible. For example, a potassium Rankine system added as a "topping cycle" (additional heating stage) to a plant may increase efficiency to 50%. The study will compare a variety of energy systems. These include: advanced steam plants; open and closed cycle gas turbine systems; combined systems such as a gas turbine system nsed with a steam plant; supercritical carbon dioxide systems; liquid metal Rankine topping cycle magnetohydrodynamic systems and fuel cells.

Scotland goes stereo

From the start of programmes on October 14, some of Radio Scotland's music and light entertainment programmes and certain Radio 4 items are now broadcast in stereo from the Kirk o'Shotts v.h.f. transmitter. Radio 2 and Radio 3 are already in stereo. The stereo signals will be re-broadcast by the relay stations at Ashkirk (serving much of the border country), Ayr, Campbeltown, Forfar, Millburn Mair (Vale of Leven), Rosneath (Gareloch) and Toward. Some of these stations are a long way from Kirk o'Shotts so the quality and the consistency of the re-broadcast stereo signals will not be known until some time after tests have been carried out. The programme link to Scotland uses p.c.m.

Business abroad for Britain

The UK is rapidly expanding its electronics operations in North America. In response to fast-developing market opportunities, notably in the areas of advanced technology, commercial and medical electronics, the EMI Group is now progressively
establishing a network of manufacturing and marketing facilities throughout the USA. Their latest move is the acquisition of Electron Technology Inc. of Kewny, New Jersey, who manufacture specialised glass components for the electron tube industry.

Back home, the tape division of EMI has recently launched a new ferric oxide cassette tape which is 30% cheaper than high quality chromium dioxide cassettes but is claimed to produce results at least as satisfactory as chrome formulations. The new Emitape X1000 is the result of two years' research and development using a new ferric oxide micro-particle. The main technical improvements claimed compared to low noise tapes are: an increase of $3-4 \mathrm{~dB}$ output in the $8-15 \mathrm{kHz}$ region; improved overload characteristics; wider dynamic range; improved h.f. response and lower intermodulation distortion.

Channel link in service

Expansion of Britain's busiest single international route, the 38 -mile radio "hop" across the English Channel, has taken a further step forward. Under the Post Office's plan to double the route's call-carrying capacity the first 60 telephone circuits of a new microwave link are now carrying calls to France. The new link, which will eventually be handling up to 1,800 calls simultaneously is the first of two to be provided in the Post Office's drive to expand telephone and telex services with Europe.

The route from the microwave station on Kent's Channel coast to its French counterpart can at present carry 2,160 telephone calls simultaneously. The new microwave links will boost this to 5,760 . Under present plans, the Post Office expects to add 1,000 circuits of the extra capacity during the next five mouths. Further groups of circuits will be progressively introduced next year.

Broadcasting conference opened

The first session of a Regional Administrative Conference for the re-plauning of medium- and long-wave broadcasting in Regions 1 (Europe and Africa) and 3 (Asia and Australasia) opened at the beginning of October at the Geneva International Conference Centre. More than 400 delegates from 70 member countries of the International Telecommunications Union took part in the conference which lasted for three weeks (see August issue pp. 266-271, "The future of medium- and long-wave broadcasting", which described the problems facing the conference). This first sessiou concentrated on formulating the technical and operational criteria and the planning methods which will serve as a basis for the preparation by the second session of fre-

On the left the chassis of a 1923 medium-and long-wave receiver and on the right its present-day equivalent. These are two Philips radio receivers on show in a display covering the story of radio at the newly opened extension of the IBA's Broadcasting Gallery, Brompton Road, Landon.
quency assignment plans covering the 1.f./m.f. broadcastiug bands in Regions 1 and 3 . The second session is to be held from October 6 to November 22, 1975.

Technical and operational criteria took into account propagation data, modulation standards and channel spacings, protection ratios (including noise levels), transmitting antenna characteristics and transmitter powers and planning methods.

Giro errors detected

Holland's largest commercial bank is installing a new British electronic error detector and control unit to further safeguard the accuracy of its Giro payment transfers. The units are plugged in to the

Not a telephonist's nightmare, but a giant mobile telephone built in the USA by General Telephone and Electronics Corporation to promote a new concept to conserve petrol, "dial before drive". Motorists are urged in a TV commercial to phone before setting out in their car to check that the trip is really necessary. The giant phone is mounted an a VW chassis and can be driven up to 35 mph
bank's electric typewriters which are used to prepare the optical character reading input for the payment transfers. Each unit can be added on to a standard office typewriter without requiring any electrical interconnection and can beoperated directly from the typewriter keyboard to carry out computer compatible check digit verification and a variety of totalling or other functions according to a pre-determined programme.

It is important to safeguard the accuracy of the two different bank account numbers which are being debited or credited with the money value involved in each transaction. Normally, any transposition or transcription errors are discovered as soon as the data reaches the central computer, but at that stage the problems involved in investigating and rectifying errors in account numbers are such that it becomes increasingly important for any errors to be detected at the original point of entry when the source documents are still at hand.

Stereo f.m. radio in Australia

The Federal Cabinet in Canberra has authorised the introduction of stereophonic frequency modulated radio in Australia and the establishment of new radio stations in both Sydney and Melbourne for the Australian Broadcasting Commission. The new f.m. stations will be operated by the musical broadcasting societies of New South Wales and Victoria and will aim to be self-supporting. A number of stations could be licensed over the next few years. The initial steps will enable the Government to assess the demand for public broadcasting.

Camera on Mars

The first tests of the camera that will photograph Mars from ground level when NASA's Viking spacecraft lands on the planet in 1976 have been successful. The camera has very small photo-diodes positioned in the focal plane where film would be in a conventional camera. An image is reflected from a mirror through lenses onto the diodes. The mirror rotation essentially scans the image and each time it moves through one cycle, a single vertical line is scanned in the field of view. The entire camera is then slightly rotated and the next vertical line is scanned. Several minutes are needed to obtain a complete photograph because the image information is sequentially acquired at about five lines per second. Colour photos are produced by combining data from three diodes (blue, green and red sensitive).
Each Viking spacecraft consists of an "orbiter" and a "lander". The lander's imaging system consists of two cameras providing colour, black-and-white, infrared and stereoseopic views of the Martian surface. The instruments are facsimile cameras designed for operation in unusual conditions. One of the most important jobs will be to characterize the area near the lander, so scientists on Earth can select spots from which samples should be obtained for chemical and biological analysis in the miniature laboratory on board each lander. The imaging system will also provide photometric information from near-by materials that will heip deduce composition and particle sizes. It will monitor the Martian atmosphere opacity and record the position of the sun and brighter planets, to allow precise location of the lander on Mars.

Domestic satellite launch

The United States second commercial domestic communications satellite was launched aboard a Delta rocket during October. Final positioning of the satellite is in a synchronous orbit over the equator south of Los Angeles.

Each of the satellite's 12 independent fixed-gain amplifiers has a bandwidth of 36 MHz . A duplicate receiver is on board that can be switched on if necessary-the onboard wideband receiver is common to all transponders and is necessary for proper functioning.

Ion engine survives

An electric rocket engine which shortcircuited on a NASA spacecraft nearly four years ago has been restarted in space, prompting scientists at the Lewis Research Centre, Cleveland, to resume the Space Electric Rocket Test (SERT II) mission on a part-time basis. Launched in 1970, the SERT II mission was intended to demonstrate the feasibility of electric propulsion for future space missions such as

Engineers are dwarfed by the US Air Force's newest and most sophisticated weather watcher, a 17-ft-tall giant called the Defence Meteorological Satellite. The spacecraft uses a single on-board control system which steers both the launch vehicle and the satellite.
planetary probes or station-keeping in Earth orbit. The aim was to operate an ion engine for six months in space.

Presumably, the sliver of molybdenum which caused the October 1970 short-out of thruster 2 is now gone. Spinning the spacecraft to obtain a better Sun angle for the solar arrays created a small amount of artificial gravity which could have dislodged the chip. Since then thruster 2 has been operated successfully several times for short periods of up to 60% of maximum thrust, proving the long term reliability of this thruster system design.

In the ion thruster, used for orbital manoeuvre secondary engines, an electrical discharge in mercury vapour provides a dense "plasma" of electrons and positive ions. The ions are accelerated out of the thruster by a strong electric field to produce the desired thrust. Such a thruster has also been under development by the Space Department of the Royal Aircraft Establishment, Farnborough. The first use of this thruster will probably be for north-south station-keeping on a communications satellite. In this role, its thrust will be used to balance the gravitational effects of the sun and moon which would otherwise cause the satellite's position to oscillate daily in a north-south direction. With no oscillation, such a satellite could broadcast directly to individual households using fixed, inexpensive aerials.

Telemetry transmission

The telemetry links that will be used in Europe in the near future for satellites, missiles and launchers, will operate from 2.2 to 2.3 GHz (in S-band). So states the introduction to a description of the new S-band telemetry transmitter specially developed for ESRO (ITT Electrical Communication, Vol. 49, No. 3, p.251). For satellites, phase modulation is used with a peak modulation index that can reach several radians. Missiles and launchers, however, use frequency modulation. Typically, the modulating signal can be a message of the p.c.m./phase shift keying type modulating the carrier directly or alternatively, a composite signal containing subcarriers modulated by various analogue or digital signals representing telemetry and distance measurement information. The spectral bandwidth of the modulating signal may well be several megahertz for large capacity satellites and this puts severe constraints on the phase modulator.

Output power for the transmitter depends on the information rate and on the link budget aud this varies from one satellite to another. A telemetry transmitter on board a satellite can work alone or as part of a coherent transponder. In the first case it is fed with a signal delivered by the oscillator of the phase lock loop of the associated receiver which is thus in phase with the signal received by the transponder. This enables Doppler effect on the carrier to be measured so that the radial velocity of the satellite can be determined.

Criteria for the design of matrix and discrete surround-sound systems

by Michael Gerzon

Mathematical Institute, University of Oxford

Abstract

There are a number of different mechanisms by which the ears localize sounds, including several low-frequency, mid-frequency and high-frequency mechanisms, as well as information derived from the reverberation of sounds. With only a few transmission channels available, one cannot hope to satisfy them all, but most existing "discrete" and "matrix" systems do not satisfy more than one or two criteria. The approaches associated with the Nippon Columbia UMX system and the NRDC ambisonic system are the only ones so far to adequately allow for several criteria.

When stereo was introduced commercially in the 1950s, it had been subjected to experiments and theoretical studies for 25 years, by Fletcher ${ }^{1}$ in the USA, Blumlein ${ }^{2}$ in England, and de Boer ${ }^{3}$ in the Netherlands. Despite a remarkable anticipation of modern "matrix" fourspeaker systems by Blumlein ${ }^{2}$ in 1931, virtually no work had been done on fourspeaker surround sound before its recent commercial introduction. We are thus only beginning to understand how it works, and it is the object of this paper to describe the fruits of this new understanding. Not surprisingly, hastily introduced commercial systems have proved to be sub-optimal.

Because the mathematical description of surround-sound systems is far from elementary, this aspect is not dealt with here; references ${ }^{\text {to }}$ to contain such information. In this article the principles of surround-sound psychoacoustics are described, i.e. the relationship between the sound field presented to the listener and what he actually hears.

Lord Rayleigh discovered ${ }^{11,}{ }^{12}$ that the human hearing system appears to use different mechanisms to localize sounds at frequencies below and above 700 Hz . Other evidence by Rayleigh ${ }^{12,13}$, Stevens \& Newman ${ }^{14}$ and Roffer \& Butler ${ }^{15}$ and others suggests that above about 5 KHz , yet other localization mechanisms come into play, relying on the pinnae (the flaps on the ears) to modify sounds from different directions.

To make matters even more complicated, there is considerable disagreement both among theorists and experimenters as to the localization mechanism used within each band of freqnencies, quite contrary results being obtained in different cases ${ }^{16}$. It seems that the ears must nse a number of different methods of sound localization, possibly deciding on a "majority verdict" in the case when different mechanisms
would, ir used in isolation, give differing results.

In the presence of such contradictory information, the apparent localization of a sound also depends on the experience and expectations of the listener and on the type of attention he is paying to the sound. This can easily be demonstrated by reproducing via a stereo pair of good loudspeakers a sound positioned half-way towards the left speaker, but with the speakers connected out of phase. A suitably positioned listener can then hear the sonnd to be either between the

Quadraphonic quandary

While this article was written before publication of B. J. Shelley's article Quadraphonic Quandary (Wireless World, July 1974 pp. 235-6), it does deal with many of the queries he raised on the aims and methods of quadraphonics. You may find it instructive to decide how far his particular criticisms are answered here. But note two points. Firstly, that two of the systems earlier proposed by the author on purely mathematical grounds (two-channel periphony and, via a tetrahedron of speakers, four-channel periphony) are here shown to be inadequate on the type of psychoacoustic grounds suggested by Shelley. And secondly that disagreements among experimenters about quadraphonic psychoacoustics are no new thing; Harwood ${ }^{16}$ documented how little agreement there is on ordinary stereo localization. These disagreements may well be due to the conflicting directional cues at the ears inherent in all twospeaker stereo and in badly designed quadraphonic systerns.
speakers or beyond the left speaker (sometimes, both at once!).

Because most matrix four-speaker systems give highly ambiguous sound position information to the listener's ears, the results obtained will depend on the individual listener. Some listeners will learn to assign sounds to their "correct" positions with experience, and others will not. As a degree of subjectivism is a poor basis for any technology, the general principles behind various different sound localization mechanisms will be examined, with a view to extracting from these common features that can be used in designing surround-sound reproduction systems.

To design surround-sound systems we do not need to understand the full intricacies of the sound processing mechanisms in the ears and brain. As far as engineering is concerned, all we need know is what type of stimulus (i.e. sound field information) is needed to create a given subjective impression, and then we can design apparatus to produce a stimulus of the required type.

However, it is also necessary to have a description of the required stimulus that is simple enough mathematically to handle in detailed calculations. Otherwise we will only be able to design a system by guessing a circuit configuration and then "number crunching" the data in a computer to see whether it will work. As there are many millions of possible system configurations, it is extremely unlikely that such a design procedure would happen to hit upon the best possible result, or even something approximating to it. Such considerations rule out from our account such phenomena as the Haas effect, which says in essence that the earliest arrival of a sound at the ears determines its apparent direction. This is difficult to analyse mathematically, as well as being an unreliable guide to the subjective sound
direction when sounds arrive from all round.

First, what is the aim of surround sound reproduction?

Recreating a sound field

Ideally, one would like a surroundsound system to recreate exactly over a reasonable listening area the original sound field of the concert hall, or in the case of popular or electronic music, a sound field envisaged by the record producer, with many different sounds in different directions at different distances. Unfortunately, arguments from information theory can be used to show that to recreate a sound field over a two-metre diameter listening area for frequencies up to 20 KHz , one would need 400,000 channels and loudspeakers. These would occupy 8 GHz of bandwidth, equivalent to the space used up by $1,000 \quad 625$-line television channels!

The best that can be done with the two, three or four channels currently available is as follows. For each possible position of a sound in space, for each possible direction and for each possible distance away from the listener, assign a particular way of storing the sound on the available channels. Different sound positions correspond to the stored sound having different relative phases and amplitudes on the various channels. To reproduce the sound, first decide on a layout of loudspeakers around the listener, and then choose what combinations of the recorded information channels, with what phases and amplitudes, are to be fed to each speaker. The apparatus that converts the information channels to speaker feed signals is called a "decoder", and must be designed to ensure the best subjective approximation to the effect of the original sound field.

In commercial "discrete" practice, the process of assigning positions in the sound field to the available channels, known as "encoding", is done using four channels. Sounds not in the four corner positions are, in this procedure, assigned to just those two of the four channels representing corner directions adjacent to the desired direction. This only handles distant sounds in a horizontal direction, and it is by no means evident that this is the best way of

Fig. 1. Omnidirectional and velocity microphones (picture b) receiving the same low frequency information as the human hearing system (picture a).
assigning such a sound field to four channels. Similarly, it is not evident, and not in fact true, that feeding these channels directly to a square of speakers gives an optimum recreation of the original sound field.

Thus any surround-sound system gives rise to two distinct but related psychoacoustic questions:

- Is a given method of encoding the sound field ever capable of good subjective recreation of the sound field? That is, does the encoding method used permit the possibility of designing some decoder giving good results?
- Given a good method of encoding, what is the best design of decoder for use with a given layout of loudspeakers?

Low-frequency localization

The distance between the human ears is half a wavelength of a sound having a frequency of 700 Hz . At frequencies appreciably below this, the head offers no obstacle to sound waves, and so the amplitude of sound reaching the two ears is virtually identical ${ }^{11,17-19}$. The only information available at these low frequencies for sound localization is the phase difference between the two ears, and in 1907 Rayleigh ${ }^{11}$ indeed showed that this was used to localize sounds below 700 Hz .

There has, however, been disagreement as to how this low-frequency phase difference information is used to deduce sound position. One school of thought, represented by Clark, Dutton \& Vanderlyn ${ }^{20}$ and Bauer ${ }^{21}$, derived a theory assuming that the listener does not move his head, whereas Makita ${ }^{22}$, Leakey ${ }^{23}$ and Tager ${ }^{24}$ assume that the brain uses additional information from variations at the two ears caused by rotations of the head within the sound field.

It is possible to construct a "supertheory" including the above two classes of theories as special cases. Essentially, the sum of the waveforms reaching the two ears is the sound pressure that would be at the position of the centre of the listener's head were he absent. This information is the same as that picked up by an omnidirectional microphone (see Fig. 1). The remaining directional information at low frequencies reaching the listener is the difference of the waveforms at the two ears, which is the velocity of the sonnd field along the ear-axis (see Fig. 1). This is the information picked up by a sideways-pointing velocity or figure-of-eight microphone.

The fixed-head theories thus assume that the information picked up by an omnidirectional and by a sideways-facing velocity microphone is all that is available to the brain. The assumption that no use is made of amplitude differences at the two ears amounts to assuming that components of the velocity microphone information that are 90° out of phase with the omnidirectional information are not used in deducing the direction of sounds. The "moving head" theories assume that the velocity microphone information may point in any direction, but still assume
that 90° out-of-phase velocity microphone information is not used.

It is not difficult to compute the "omnidirectional" and "velocity microphone" information produced by a quadraphonic reproduction system, and hence to calculate whether the useful information at low frequencies reaching the ears is the same as for live sounds (see Fig. 2).
Such calculations reveal that, for low frequencies, no existing two-channel matrix encode/decode system reproduces all the useful information as it occurs in live sounds, although the Cooper/Nippon Columbia BMX system ${ }^{5}$ satisfies the hypotheses of Makita and Leakey. More remarkably, conventional discrete fourchannel sound also does not satisfy lowfrequency criteria other than those of Makita and Leakey. This is because phantom inter-speaker sound images with this system give too large an omnidirectional component of the sound field ${ }^{25}$, which causes front-centre and sidecentre sounds to be very poorly localized ${ }^{26}$,
The poor positioning of phantom images suggests that discrete fourchannel systems should not be used as a standard of excellence by which other systems are judged. There are better ways of representing the set of possible directions around the listener via four loudspeakers ${ }^{8,}{ }^{26}$. The National Research and Development Corporation has recently been developing, with the author, a two-channel decoding apparatus for BMX or RM-encoded sounds, to feed four loudspeakers so as to satisfy the low frequency criteria shown in Fig. 2, and also the mid-high frequency criteria described later.

The three-channel system discovered

Fig. 2. Low-frequency quadraphonic localization information available to the ears.
Omnidirectional information:
$\Omega=L_{B}+L_{F}+R_{F}+R_{B}$
x-velocity information:
$X=\operatorname{Real}\left(-L_{B}+L_{F}+R_{F}-R_{B}\right)$
y-velocity information:
$Y=\operatorname{Real}\left(L_{B}+L_{F}-R_{F}-R_{B}\right)$
For 'live'' sounds we must have
$\Omega^{2}=\frac{1}{2}\left(X^{2}+Y^{2}\right)$.

Fig. 3. Tetrahedral loudspeaker layout shown embedded in a cube.
independently by the author ${ }^{10}$, Gibson et al^{27}, Eargle ${ }^{28}$, Madsen (unpublished) and Cooper ${ }^{5}$, is capable of correct low frequency results, as is the four-channel QMX system ${ }^{5}$ and the tetrahedral withheight system of the author ${ }^{6,10.29, ~ w h i c h ~}$ is reproduced via the speaker layout of Fig. 3. It is also possible to design a decoder for discrete recordings so as to satisfy all low-frequency requirements.

It is well known that velocity microphones give an exaggerated bass for very close sounds. Because the ears use velocity microphone information to localize sounds, close loudspeakers modify the directional effect at the ears. In particular, 90° out-of-phase velocity components caused by phase shifts are converted to phase differences between the ears. This causes the very low frequencies of phase-shifted sounds to be rotated around the listener. This effect has been observed by Bauer et al ${ }^{30}$ via two speakers, but can be removed electronically. The degree of the effect is inversely proportional to loudspeaker distance.

Statistical methods may be used to apply the above theory to listeners not placed in the centre of the loudspeaker layout. The details are involved, but give results somewhat similar to the mid-high frequency theory of sound localization described next.

Mid-high frequency localization

Above 700 Hz , the wavelength of sound is sufficiently small that the phase relationships between the loudspeakers are no longer of primary importance in sound localization. Under these conditions, what matters is the directional behaviour of the energy field around the listener. It is possible to show that, because of the positive nature of energy (in the mathematical sense), one can only exactly recreate the energy field of a live sound source through a small number of loudspeakers if the sound happens to be at the position of one of these. Thus at mid and high frequencies, not all of the ear's localization mechanisms can be satisfied in a practieal reproduction system.

However, it is possible to analyse the directional energy field into omnidirectional and vector components analogous to those used for the sonnd amplitude field at low frequencies. If one assumes that the effect of head movement is nsed by the brain, these sound energy components can be used to estimate the probable subjective mid- and high-frequency sound direction. For a sound reproduced through several speakers, this direction may be calculated as the direction of the sum of vectors, one pointing at each speaker, each having as length the energy of the sound from that speaker. Calculations using this theory indicate that various four-speaker sound reproduction systems give the mid-high frequency sound localizations shown in Fig. 4, which agrees well with experimental data ${ }^{26}$.

Note that if the number of channels equals the number of speakers (as for "discrete" and QMX via four speakers), then phantom inter-speaker sounds are drawn toward the nearest speaker. Cooper ${ }^{31,32}$ has called this the "detent" effect, but it is not significant for his BMX (two-channel) or TMX (three-channel) systems. A similar "pull" by the speakers is found for tetrahedral with-height reproduction (Fig. 3), but not when a cube of speakers is used.

The ratio of the length of the abovedefined energy vector to the total reproduced energy should ideally be unity; in practice the larger it is the better defined the sound image-it is this that makes TMX better than two-channel BMX.

This mid-high frequency theory holds only so long as the ears do not have too great a directionality in their response to sounds. The data of Sivian \& White ${ }^{17}$ and Rolls ${ }^{19}$ on the ear's directionality show that above about 5 kHz a new theory is needed.

Loealization above 5 KHz

In 1907, Rayleigh ${ }^{11}$ found that when the head was stationary the ability to distinguish front from rear relied entirely on high frequencies. This has been confirmed by Stevens \& Newman ${ }^{14}$ and Roffler \& Butler ${ }^{15}$, who showed that the ears could localize sounds in the plane of symmetry of the human head quite accurately despite the two ears receiving the same sound waveform! This ability disappeared when the pinnae were masked. Conversely, many workers have found that dummy head recordings (which incorporate the effect of the pinnae's acoustic obstruction) give good spatial localization when reproduced either via headphones or via loudspeakers with the pinnae masked ${ }^{33}$. Perhaps using the ultimate "purist" microphone technique, Edmund Rolls of Oxford University has made similar recordings using microphones inside the ears of real heads!

The pinnae localization mechanism is not well understood, but appears to rely on the fact that sounds from each direetion arrive inside the listener's ear with a distinctive colouration. Thus, if we can reproduce that colouration in a

Fig. 4. Perceived localization vs intended direction of sounds in degrees, according to the mid-high frequency theory of this paper, for various systems via a square of speakers as in Fig. 2. Triangles indicate speaker positions. QMX data only applies for a full bandwidth system. Compare with Figs 19 and 20 of reference 26.
recording, we can reinforce the sense of direction created; to the author's knowledge, this has not yet been done in surround-sound recordings.

Reverberation to aid localization

It is possible to locate sounds more accurately in a moderately reverberant room than when there is no reverberation. Although the mechanism is not understood, it is found that correctly recorded reverberation also aids sound localization during reproduction ${ }^{34}$, although poor artificial reverberation makes the sound image more indistinct. The author has computed the distribution of reverberation energy around the listener given by various recording techniques ${ }^{34}$, and it is found that the most accurate sound localization is obtained when the energy is uniformly distributed, and not concentrated too ' much in any one direction.

Thus if a surround-sound system is to work optimally, it must be capable of capturing all nuances of reverberant sound and of reproducing these uniformly around the listener. Certain popular commercial matrix systems assign the original sound field to the two available channels in such a discontinuous manner ${ }^{8,9}$ that these criteria cannot be satisfied. "Variable matrix" or "logic" decoders, which work by pushing the whole sound field towards those directions in which the sound is momentarily strongest, clearly cannot reproduce those nuances of reverberation needed by the ears to localize sounds. The "detent" effect of discrete reproduction (Fig. 4) also prevents uniformly distributed reverberation.

Acknowledgment

This article is a revision of a paper by Michael Gerzon given at the 1974 Festival du Son, Paris. (Published in French in Conférences des Journées d'Etudes 1974 du Festival du Son-Editions Radio.)

References

Abbreviations JAES and JASA mean Journal of the Audio Engineering Society, and Journal of the Acoustical Society of America, respectively.

1. Fletcher, H. Stereophonic sound film systemgeneral theory, JASA. vol. 13, 1941, pp. 88-99.
2. Blumlein, A. D. British Patent 394,325 (1931).
3. de Boer, K. Stereophonic sound production, Philips Tech. Rev., vol. 5, 1940, pp. 107-44.
4. Shorter, G. Four-channel stereo, Wireless World, vol. 78, 1972, pp. 2-5, 54-7. See also Wireless World Annual, 1975, pp. 84-9.
5. Cooper, D. H. \& Shiga, T. Discrete-matrix multichannel stereo, JAES, vol. 20, 1972, pp. 346-60.
6. Gerzon, M. A. Periphony: with-height sound reproduction, JAES, vol. 21, 1973, pp. 2-10.
7. Scheiber, P. Analyzing phase-amplitude matrices, JAES, vol. 19, 1971, pp. 835-9.
8. Fellgett, P. B. Perspectives for surround sound, Hi-Fi Sound Annual, 1974.
9. Fellgett, P. B. Japanese regular matrix, Hi-Fi News, Dec., 1972.
10. Gerzon, M. A. Principles of quadraphonic recording (in two parts), Studio Sound, Aug. \& Sept.,
1970 . 1970.
11.* Strutt, J. W. (Lord Rayleigh). On our perception of sound direction, Phil. Mag., vol. 13, 1907, pp. 214-32.
12.* Strutt, J. W. Our perception of the direction of a source of sound, Nature, vol. 14, 1876, pp. 32, 33.
13.* Strutt, J. W. Acoustical observations-1, Phil. Mag., 1877, pp. 456. 457.
11. Stevens, S. S. \& Newman, E. B. Localization of actual sources of sound, Amer. J. Psychol., vol. 48, 1936, pp. 297-306.
12. Roffler, S. K. \& Butler, R. A. Factors that influence the localization of sound in the vertical plane, JASA, vol. 43, 1968, pp. 1255-9.
13. Harwood, H. D. Stereophonic image sharpness, Wireless World, vol. 74, 1968, pp. 207-11.
14. Sivian, L. J. \& White, S. D. JASA, vol. 4, 1933, pp. 296-8.
15. Wiener, F. M. On the diffraction of a progressive sound wave by the human head, JASA, vol. 19, 1947, pp. 143-6.
16. Rolls, E. (private communication).
17. Clark, H. A. M., Dutton, G. F. \& Vanderlyn, P. B. The stereosonic recording \& reproducing system, I.R.E. Trans. on Audio, 1957, pp. 96-111. 21. Bauer, B. B. Phasor analysis of some stereophonic phenomena, JASA, vol. 33, 1961, pp. 1536-9. 22. Makita, Y. On the directional localization of sound in the stereophonic sound field, $E B U$ Review, part A no. 73, 1962, pp. 102-8.
18. Leakey, D. M. Some measurements on the effects of interchannel intensity and time difference in two-channel sound systems, JASA, vol. 31, 1959, pp. 977-87.
19. Tager, P. G. Some features of physical structure of acoustic fields of stereophonic systems, JSMPTE, vol. 76, 1967, pp. 105-10.
20. Fellgett, P. B. Directional information in reproduced sound, Wireless World, vol. 78, 1972, pp. 413-7.
21. Kohsaka, O., Satoh, E. \& Nakayama, T. Sound-image localization in multichannel matrix reproduction, JAES, vol. 20, 1972, pp. 542-8.
22. Gibson, J. J., Christensen, R. M. \& Limberg, A. L. R. Compatible f.m. broadcasting of panoramic sound, JAES, vol. 20, 1972, pp. 816-22.
23. Eargle, J. M. Multichannel stereo matrix systems: an overview, JAES, vol. 19, 1971, pp. 552-9.
24. Gerzon, M. A. Experimental tetrahedral recording (in three parts), Studio Sound, Aug., Sept. \& Oct. 1971.
25. Bauer, B. B., Gravereaux, D. W. \& Gust, A. J. Compatible stereo-quadraphonic (SQ) record system, $J A E S$, vol. 19, 1971, p. 641.
26. Cooper, D. H. Proposal for QMX discrete/ matrix carrier-channel disc, privately circulated report, July 15, 1972.
27. Cooper, D. H., Shiga, T. \& Takagi, T. QMX carrier-channel disc, JAES, vol. 21, 1973, pp. 614 -24. 33. Sennheiser Kunstkopf-Stereofonie, 45 rev./min. record, Sennheiser Electronic, 3002 Bissendorf (1973).
28. Gerzon, M. A. Recording techniques for multichannel stereo, British Kinematography, Sound \& Television, vol. 53, 1971, pp.274-9.

[^8] Papers, Dover Publications, New York.

Integrated injection logic

The development of new techniques in circuit integration has apparently been concentrated in the field of m.o.s. devices, and the amount of information appearing in the technical press about m.o.s. has tended to obscure the latest arrival on the bipolar logic field-integrated injection logic ($\mathrm{i}^{2} 1$. . for short). Its characteristics are impressive and it seems set to take over from conventional t.t.l. circuitry when packing density and low power dissipation are the essential requirements of a system.

As a result of the elimination of passive components in the basic gate and a reduction in the number of devices per gate, up to 3000 gates can be fabricated in one chip-an increase by a factor of ten over t.t.l. chips. The speed of i^{2}.I. is lower than that of t.t.1. (delay around 30 ns instead of 10 ns) but the speed-power product is only about 0.4 pJ or less for i^{2}. 1 ., compared with 100 pJ . Cost is lower than in i.cs using the m.o.s. technology, particularly so as the same chip can coutain both digital and analogue circuits.

The circuit takes the form of a radically rationalized direct-coupled-transistor-logic (d.c.t.l.) element. In the diagram at (a), a typical d.c.t.l. gate (on the left) is shown
driving one input of two other gates. Rearranging the interface gives (b) in the drawing, which can be further simplified by replacing the base resistor by an active current source and by substituting a multicollector transistor for those with common bases. The result is (c), where the input emitter is termed the injector, the whole circuit being contained within the area of a t.t.1. multi-emitter input transistor. The combining of the two base emitter junctions of the interface gives protection against the effect, when junction voltages on different chips differ, of one gate monopolizing the current output from the previous gate, starving others connected in parallel.

The basic gate can operate at a current of around $\ln \mathrm{A}$ and a logic swing of 0.6 V , which means interface circuits are needed between i^{2} I. and other logic systems or linear devices. Variations of voltage and current can be obtained for different applications.

The new logic family can be used in a similar range of work as other 1.s.i. systems. It was originated by Philips at Eindhoven, Netherlands, and at about the same time, but independently, by IBM at Boblingen.

Reception of cloud cover pictures; limiter and phase-locked loop system

by G. R. Kennedy

In an f.m. receiver, the signal limiter amplifies the signal so that any amplitude variations are minimized, in order that the detector may see a constant amplitude frequency modulated carrier. All f.m. detectors respond to some degree to a.m. as well as f.m. The principle of most limiters is amplification by a saturation amplifier. The process is sometimes referred to a clipping, although this implies a truncated sine output, with flat-topped sinewaves. Ideally, true f.m. receiver limiters should produce undistorted sinewaves. The amplitude variations in the i.f. signal may be due to relatively slow changes in the received carrier strength as well as due to faster impulse noise. The input signal, and i.f. signal strength may vary over a wide range, and hence the limiter must have a wide dynamic range. In order to limit amplitude changes at low signal input levels as well as at high levels, considerable gain must precede the limiter. A single-transistor limiting stage (Fig. 12) will not handle a wide range of limiting levels, and several cascaded stages must be employed.

Transistor $T r_{14}$ is biased so that with a small input of a few hundred millivolts the transistor saturates. The saturation knee-voltage may be varied by altering R_{48}, within the limits imposed by thermal runaway. Considerably more efficient limiting can be contrived using one of the commercially available integrated circuit limiters, made by such manufacturers as RCA and Motorola, or by employing an i.c. wide band amplifier and limiting the output above the knee voltage with diodes. Fig. 13 shows the simple connection of the RCA CA3076 limiter integrated circuit. The pin connections refer to the lead numbers of the eight-lead TO-5 package. The CA3076 will operate up to 20 MHz , and at 10.7 MHz provides 80 dB voltage gain with a limiting knee above $50 \mu \mathrm{~V}$ input. Fig. 14 shows two wide-band amplifiers connected for limiter service. The short circuits between 3 and 4, 6 and 7 , and 8 and 9 of each i.c. connect diodes internally which limit the output voltage to about 25 mV for any input voltage between $300 \mu \mathrm{~V}$ and 3 volts r.m.s. up to 30 MHz . The overall gain is about 100 dB .

Phase-lock loop detector

For weather satellite applications the phase-lock loop detector is outstanding in

performance ${ }^{6}$. The a.m. rejection and deviation linearity are far better than for conventional ratio detectors. Although limiters have been described, an integrated circuit phase-lock loop detector such as the Signetics NE565 does not need elaborate limiting preceding it ${ }^{6}$, since the a.m. rejection is 40 dB or so. However, phaselock loops built from discrete components, such as a synchronized Wien bridge may not have such outstanding a.m. rejection. The basic block diagram of a phase-lock loop is shown in Fig. 15. The p.1.1. is a closed-loop servo where the input is a frequency signal, the error device is a

Fig. 11. Crystal filter and associated circuitry (see part 1).

Fig. 12 (left). Single stage limiter.
Fig. 13. Single i.c. limiter.

phase-sensitive detector (p.s.d.), and the feedback path is a voltage-controlled oscillator (v.c.o.) fed through a low-pass filter which in turn is fed by the error output after amplification. The output is taken from the p.s.d. output either before or after filtering, depending on whether further filtering and buffering is required. The sense of the feedback path is such that a difference in phase (and hence, instantaneously, frequency) between the input or reference signal and the v.c.o. or control frequency, produces an output which alters the v.c.o. frequency to reduce the error. Since the phase detector is a sum-

Fig. 14. Two-integrated

Fig. 15. Phase-locked loop block diagram.
filtered
output
and-difference device much the same as the mixer in a superheterodyne receiver, there are sum-and-difference products produced at the p.s.d. output. The low-pass filter removes the higher frequency component, and allows an l.f. error voltage to drive the v.c.o. If the loop is in lock with a constant frequency reference, and the reference changes in frequency, the v.c.o. will change frequency in sympathy. If the reference input is frequency modulated, then, the p.s.d. output will vary with the reference frequency modulating frequency. The p.s.d. output can be made extremely linear with error and hence f.m. deviation, so that the p.s.d. output is an accurate f.m.-detected outpnt signal. The phasesensitive detector cannot have an infinite bandwidth. There comes a point where the freqnency difference between the reference and v.c.o. frequencies is so large that the loop is not in lock, and the v.c.o. runs at its natural frequency f_{n}. As the reference frequency approaches the v.c.o. frequency at a given point the loop will lock up and the v.c.o. will run at the reference input frequency. This will happen at the same difference frequency, higher or lower, than the v.c.o. natural frequency. The difference between these frequencies is called the "capture range". This is shown diagrammatically in Fig. 16. There is frequency hysteresis in the p.l.l. operation so that if the reference frequency alters away from f_{n}, the loop will remain in
lock beyond the capture point frequencies. The difference between the point where a locked loop will lose lock for an increasing or decreasing frequency from f_{n} is the "tracking" or "lock range". This is shown in Fig. 17. It then follows that as an input frequency sweeps high-to-low or low-to-high, the locking of the loop will not be symmetrical about f_{n} (Fig. 18). The apparent asymmetrical operation of the loop is important when the bandwidth of the receiver and the likely Doppler shift of the satellite received frequency are considered. If the receiver bandwidth is insufficient, the phase-lock loop may drop back at an extreme of carrier frequency deviation. This will cause the v.c.o to return to f_{n}, and lock will not be required until the deviation has returned through the appropriate capture point. There is therefore a longer period of dropped lock -and hence picture deterioration-than might be thought by simply regarding the tracking range. The capture range should be sufficient to lock on the expected satellite frequency deviation plus Doppler, but not too wide to allow transient lock on very strong out-of-channel signals which may break through even the narrow bandwidth i.f. amplifier stage. The use of the p.1.1. has an unexpected advantage when receiving grossly fading signals: if the loop does drop lock, the return of the v.c.o. to f_{n} causes the picture display to return to mid grey. This is the least conspicuous

Fig. 16. Phase-locked loop capture range (a) reference frequency rising (b) reference frequency falling (c) resultant capture range. The v.c.o. natural frequency is f_{n}.
tone for picture interference.
A practical circuit, using a Signetics NE565 p.1.1. for an i.f. of 470 kHz , is shown in Fig. 19. Here a single-rail supply is used, with appropriate biasing of the differential input, pins 2 and 3. The input is 470 kHz deviated at a rate of 2.4 kHz and may be to either of the input terminals for optimum a.m. rejection. The input for the NE565 should not exceed 400 mV . Pins 8 and 9 set the v.c.o. frequency. Frequency f_{n} is given approximately by

$$
f_{n}-\frac{1.2}{4 R_{5} C_{z}} \text { where }
$$

f is in Hz, R in ohms, C in farads. Resistor R_{5} is usually set to be below $20 \mathrm{k} \Omega$, and ideally at $4 \mathrm{k} \Omega$. Capacitor C_{3} decouples some of the input frequency from the output, which is taken from pin 7 and C_{6} decouples the supply at the device pins, C_{4} is the loop filter capacitor and sets the capture range of the loop.

Fig. 20 shows typical values of C_{4} for an NE565 p.l.1. operating at 470 kHz . For a 470 kHz input at 300 mV pk to pk deviated $\pm 10 \mathrm{kHz}$ the output at pin 7 is approximately 30 mV pk to pk with a considerable amount of 470 kHz output, which must be filtered out. Fig. 21 shows a two-stage 2.4 kHz filter. The performance is as follows: input 30 mV pk to pk ; output at max. gain setting 7.5 V pk to pk at 2.4 kHz ; overall gain 47 dB ; bandwidth $1.9 \mathrm{kHz}: 3 \mathrm{~dB}$ points $1.2 \mathrm{kHz}, 3.1 \mathrm{kHz}$.

Fig. 19. Practical phase-locked loop circuitry.

Fig. 20. Capture range versus filter capacitance for 475 kHz p.l.l. circuit in
Fig. 19. Discriminated output at pin
$7 \approx 100 \mathrm{mV}$ per 25 kHz shijt.

Components list

Resistors-R

Fig. 11. $38 \quad 18 \mathrm{k}$
R
18 k
3 k
Fig. 11. $38 \quad 18 \mathrm{k}$
40330
41820
43680
$44 \quad 15 \mathrm{k}$
45 10k
$\begin{array}{ll}47 & 1.8 \mathrm{k}\end{array}$
Fig. 12. 4882 k
Fig. 13. $50 \quad 2.7 \mathrm{k}$
Pig. 14. $51 \quad 100$
525.6 k

Fig. 19. $53 \begin{array}{ll}53 & 10 \mathrm{k} \\ 54 & 4.7 \mathrm{k}\end{array}$
Capacitors-C
Fig. 11. 43 in

43	ln	62	10 n
44	1 n	63	10 n
45	ln	64	10 n
46	1 n	65	10 n
47	18 p	66	$20 \mathrm{p}^{*}$
48	18 p	Fig. 19.67	1.5 n
49	ln	68	150 p
50	5 n	69	1 n
51	5.6 p	70	10 n
52	$20 \mathrm{p}^{*}$	71	
53	10 n	72	10 n
54	10 n	Fig. 21.73	10 m
55	10 n	74	150 p
57	10 n	75	22 n
58	10 n	76	10 n
59	10 n	77	10 m
60	10 n	78	100 p
ors- L	79	0.1μ	

Inductors- L
Fig. 21. $58 \quad \begin{array}{ll}580\end{array}$
59 10k
$\begin{array}{ll}60 & 10 k \\ 61 & 680\end{array}$
62 250k
63 10k
65 10k
10k

67 lk
68
10 k

69
70
10k
Fig. 14. $61 \quad 10 \mathrm{n}$
6310 n
64
10 n
10 n
. 5 n
n
10 n
7210 n
10 mp
Fig. 12. 5510 n
. 57 10n

Fig. 11. 150.05 *link coupling
16 0.5*
1710 total tapped one-third way up
Fig. 14. 19 Self-resonant at i.f. frequency 20 Self-resonant at i.f. frequency 21 10*
*Value depends on circuit tuning
Transistors-Tr
Fig. 11. 12 BSX20
13 BSX20
Fig. 12. 14 BSX20
Crystal filter
Fig. 11. ITT 015AD or 901AM or similar for 10.7 MHz
Integrated circuit
Fig. 13. 1 CA3076
(To be concluded)

Reference

6. Signetics Linear Phase Locked Loops Application Book, Signetics International Corporation, Yeoman House, 63 Croydon Road, London SE20.

Fig. 21. Two stage 2.4 kHz filter.

A digital clock and calendar

Part 3. Concluding the clock calendar project with leap-year logic and a power supply design

by J. K. F: Nosworthy and N. J. Roffe

Fig. 10 shows the circuitry for the years counter and the associated leap-year logic. The years counter itself is straightforward, consisting of four sequential decade counters $I C_{13-16}$. Drive is of course derived from the output of the months section. Reset is to 0000 , presenting no problems, and this is actnated conventionally from the terminal output.

Leap-year detection follows the principles already set forth. Reviewing these, it will be seen that it is necessary to examine the last two digits of the year in order to decide whether or not the year is an ordinary leapyear, and all four digits in the event that the last two are 00 (century) in order to decide a century leap-year. For the first and third digits, to cover all contingencies, all possible
digits from 0-9 need to be examined; for the second and fourth digits, only even numbers (including 0) need to be examined.

Examination of the year being displayed is by the array of NAND gates $I C_{20-25}$ so far as the last two year digits are concerned (i.e. examination for ordinary leap-years) and by a duplication of these to deal with the first two digits for century leap-years. All these gates are fed either direct from the binary-coded outputs of the years counters, or via inverters $I C_{17-19}$, according to their particular logic requirements. Breaking the gates down into groups, $I C_{20-22}$ deal with the fourth digit; an output being passed by $I C_{20}$ (a) or (b) for a 0 or a 4 respectively; $I C_{2 I}$ (a) or (b) for a 8 or a $2 ; I C_{22}$ (a) for a 6. The ontput in each case, if it occurs, is a
low, and this is inverted by $I C_{23}$ to a high before being passed to an input of $I C_{24}$ or $I C_{25} . I C_{24}$ and $I C_{25}$ repeat the screening process on the third digit; if this is odd, it will enable, via the A 6 output from $I C_{14}$, both $I C_{24}$ (d) and $I C_{25}$ (a); so that if a fourthdigit 2 or 6 has been screened through by $I C_{2 j}$ (b) or $I C_{22}$ (a) an output will be derived from $I C_{24 / 25}$. Similarly, if the third digit is even, the A 6 output from $I C_{14}$ via $I C_{17}$ will enable $I C_{23}(\mathrm{a}, \mathrm{b}, \mathrm{c})$; so that if a fourth-digit $0,4,8$ has been screened through by $I C_{20}$ (a) or (b) again an output will be derived from $I C_{24}$. In each case the output from $I C_{24}$ or $I C_{25}$ will be a logic 0 ; and since these are open-collector i.cs with a common collector load R_{5}, wired-OR logic applies so that the input of invertor $I C_{23}$ will be driven to logic 0 .

A final piece of detection must be applied to the last two digits of the year; that is the detection of a specific 00 . This must be detected if it occurs in order that the "repeat" circuitry for scanning the first two digits may be actuated in the case of a century leap-year. This is done by $I C_{26}$, an 8 -input NAND gate fed with the appropriate outputs of counters $I C_{15}$ aud $I C_{16}$. If the output from $I C_{26}$ is favourable, it enables (after suitable inversion) the top gate of $I C_{25}$ to accept a signal from the first two digits screening circuitry, indicating the presence of a century leap-year. If $I C_{26}$ output is unfavourable, it will leave the second gate of $I C_{25}$ in operation so as to allow an output throngh from the last two

$$
\begin{gathered}
\begin{array}{c}
\text { repeat circuizry } \\
\text { for century leap year } \\
\text { using }
\end{array} \\
\mathrm{A}_{7}, \mathrm{~B}_{7}, \mathrm{C}_{7}, \mathrm{D}_{7}, \mathrm{~A}_{8} \ldots \ldots .
\end{gathered}
$$

Fig. 10. "Years" counter and "leap-year" logic. Gates are identified from the top of the diagram, e.g. $I C_{20(a)}$ is associated with " O " and $I C_{21(b)}$ with " 2 ". The input A to $I C_{24,25}$ is $A 6$ from $I C_{14}$.
digits screening circuitry, for indication of ordinary leap-year. In either case, whichever gate a signal comes through, it will cause a resultant output of logic 0 since again $I C_{25}$ is an open-collector type aud the common collector resistor R_{6} gives wired-OR logic.
Finally, the resultant leap-year signal is inverted by $I C_{l g}$ to give a high, and this is used both to drive the alternative February line on the ROM matrix (see Fig. 9) and to drive $T R_{I}$ for illumination of the l.e.d. which indicates a leap-year. ($T R_{I}$ is interposed between $I C_{I g}$ output and the l.e.d. because the direct output from $I C_{19}$ would not give sufficient brightness owing to its current-sink limitations-an alternative, if any spare sections of i.cs were available, would be to parallel several of them up to increase the current availability.)

Main power supply

The circuit for this is given in Fig. 11. The principle adopted is that the function of the main power unit is to produce a minimal 24 V supply, thoroughly smoothed as regards mains ripple and major supply transients but not necessarily precisionregulated. This supply is fed to the various units, and these each contain their own on-card i.c. regulators, providing for each unit a precisely regulated supply rail which is readily adjustable to individual unit requirements. This two-stage approach also ensures really efficient inter-unit decoupling which, as any user of digital i.cs has doubtless found out the hard way, is absolutely vital!

Two separate outputs are in fact provided; the reason being that, on considering the requirements for the stand-by battery facility, it is found that several portions of the clock do not have to be kept powered during a mains power cut. These are principally the nixie decoder/drivers, which consume quite a fair amount of current, also various ancillary portions such as the BBC accuracy comparator. The display itself can also be dispensed with during a power cut; and obviously ${ }^{-1}$ hese economies
are desirable in order to lengthen stand-by battery life. The 24 V output is therefore split into one line which must always be kept alive, i.e. backed up by the batteries, and one which is powered solely from the mains. The two outputs are respectively labelled (2) and (1).

For the stand-by battery supply, manganese dry-cells are used. Rechargeable batteries were considered, but lead-acid was thought to be too messy and labourdemanding and alkaline cells, which would have been ideal as they could have been left on permanent floating charge, were unfortunately ruled out by expense. Since, therefore, a floating-charge principle cannot be used, it was necessary to devise a changeover system which would operate in the event of main failure; and for this we have adopted the principle of steering diodes. The mains-fed supply is arranged to be of slightly higher voltage than that from the batteries, and the two are commoned via diodes (D_{3}, D_{4}). Under mains operation, therefore, the diode in the battery line will be reverse-biased, so that no current flows from the batteries, whilst the one in the mains-fed line will conduct. In the event of mains failure or serious mains undervoltage, the situation is reversed; the battery series diode supplying output current and the mains-fed diode preventing this from flowing back through the rectifier circuit. The principle is simple, foolproof and gives, of course, an instantaneous changeover. The only precaution which must be observed during design and initial set-up procedure is to ensure that the voltage limits are fairly carefully set so that, whilst the battery diode is held firmly off by the over-voltage of the mains-fed supply, this over-voltage is not so large as to give rise to an unmanageable falling transient as the batteries cut in. A point which is not perhaps immediately obvious in this connection is that the mainsfed supply must be substantially free from ripple, as otherwise its instantaneous voltage becomes a variable-hence the necessity for including a series regulator $\left(T R_{1}\right)$ in the mains-fed supply line.

The standing drain from the batteries is very small, and their shelf life is long; but it was thought nevertheless desirable to provide a warning indication of when they were becoming exhausted. This is done by a 709 op-amp which continually compares the battery voltage with that set by a reference zener D_{2} fed from the mains-operated supply. Preset R_{4} adjusts this reference voltage to the level at which it is desired that warning shall be given (this can be decided on by reference to the battery manufacturer's data-we have actually decided on 20.5 V). While the battery voltage is above this level, a positive output is derived from the op-amp which turns $T R_{2}$ on and illuminates $L P_{2}$. When, however, the battery voltage falls below that selected by R_{4}, the op-ampoutput swings to negative, $T R_{2}$ cuts off, turning on $T R_{3}$ which lights $L P_{3}$. We used the 709 op -amp in preference to the more obvious 710 voltage-comparator because we found the latter to be troublesome during the changeover period, which is of course very slow-the 710 tended to give parasitic oscillatious during this time. The 709 is used on open-loop gain and the $100 \mu \mathrm{~F}$ used as output frequency compensator gives the necessary slight hysteresis. The back-to-back zeners strapped across the op-amp inputs merely limit the maximum input voltage in either direction to a safe level. The op-amp and its circuitry are fed from the 24 V line by a 15 V regulator, since 24 V is considerably higher than its maximum V_{s} rating. In this application, the provision of a negative op-amp supply rail is not necessary, and the $-V_{s}$ connection is simply grounded.

Switch S_{3} is provided so that the operation of the comparator circuit may be checked from time to time. In its normal position (up) it supplies battery voltage to the op-amp, as described above. Depressed, it supplies instead an auxiliary reference voltage derived from D_{2} by R_{5}. This is set to be slightly lower than the voltage from R_{4}, so that it simulates a low battery voltage and operates the warning indicator.

To save stand-by battery current during

Fig. 11. Main power supply, with battery-condition indicator.
power cuts, the indicator circuitry could be fed from output (1) instead of from output (2). However, if this is done $L P_{2}$ will not be illuminated during a power cut, neither will any other indicator; and since the display will also be off, there will be no indication that the clock is functioning at all. We thought this to be undesirable.

The main power supply feeds all the units except the nixie display and the BBC accuracy monitor. For the former, the usual 180 V is required, with no standby battery facility; we do not give the circuit here since it presents no difficulty. (It is, however, interesting to note in passing that our solution for the regulation requirement was the use of a good old-fashioned cathode follower-solid-state circuitry still has a

Fig. 12. Circuit of high-current 5 V regulator for on-card use.
few outposts to conquer!) For the latter, again no stand-by facility is required; and since it requires a dual-rail supply for its op-amp, we found it simplest to power it via a small separate on-card supply, using
a sub-miniature mains transformer and an MC1468 dual-tracking regulator.

For remaining on-card regulation of the 5 V logic rails, either LM309K potted regulators have been used or, where higher output current is reqnired, the circuit shown in Fig. 12. The theoretical maximum current available from this circuit is 2 A , representing a dissipation in the series transistor of 40 W , but practical limitations of heat-sink restrict this to about 1.5 A . It should be uoted that the output voltage control R_{4} is used to tap down the zener reference source instead of, as is more usual, the output voltage-this not only gives better stability, since errors in output voltage are not attenuated before being fed back, but it also allows the use of a 5.6 V

Fig. 13. Temperature controller

Parts list for oscillator chain (Fig. 2)

R_{1}	$1 \mathrm{M} \Omega$
R_{2}	$2.2 \mathrm{k} \Omega$
R_{3}	$1.5 \mathrm{k} \Omega$
$R_{\text {d }}$	$22 \mathrm{k} \Omega$
R_{5}	$47 \mathrm{k} \Omega$ preset
R_{6}	$22 \mathrm{k} \Omega$
R_{7}	470 ת
R_{8}	1 k ((see corrections)
$R_{\text {g }}$	$8.2 \mathrm{k} \Omega$
R_{10}	$12 \mathrm{k} \Omega$
R_{11}	1 k ,
R_{12}	$5.6 \mathrm{k} \Omega$
R_{13}	$2.2 \mathrm{k} \Omega$
R_{14}	$1.5 \mathrm{k} \Omega$
R_{15}	$5.6 \mathrm{k} \Omega$
R_{16}	560Ω
R_{17}	470n
R_{18}	$5 \mathrm{k} \Omega$ multi-turn preset
$R_{t 9}$	$4.7 \mathrm{k} \Omega$

Capacitors

C_{1}	$0.1 \mu \mathrm{~F}$
C_{2}	$0.1 \mu \mathrm{~F}$
C_{3}	39 pF preset
C_{4}	200 pF
C_{5}	30 pF preset (see correction)
C_{6}	500 pF preset (see correction)
C_{7}	300 pF
C_{8}	$0.1 \mu \mathrm{~F}$
C_{9}	$0.01 \mu \mathrm{~F}$

Semiconductors

D_{1}	1N4004 (used as varicap)
D_{2}	6.8 V zener diode
$T r_{1,2}$	2 N 3819
$T r_{3,1,5}$	BC108
$T r_{6}$	BC477

Transformer

$T_{t} \quad$ Denco IT

Parts list for BBC comparator
 (Fig. 4)

Resistors
$R_{20} \quad 10 \mathrm{k} \Omega$
$R_{21} \quad 47 \mathrm{k} \Omega$
$R_{22} \quad 10 \mathrm{k} \Omega$ preset
$R_{23} \quad 470 \mathrm{k} \Omega$
$R_{24} \quad 2.2 \mathrm{k} \Omega$
$R_{25} \quad 39 \mathrm{k} \Omega$
$\begin{array}{ll}R_{26} & 1 \mathrm{k} \Omega \\ R_{27} & 220 \Omega\end{array}$
$R_{28} \quad 39 \mathrm{k} \Omega$
$\begin{array}{ll}R_{29} & 560 \Omega \\ R_{39} & 390 \Omega\end{array}$
$\begin{array}{ll}R_{31} & 12 \mathrm{k} \Omega \\ R_{31} & 100 \mathrm{k} \Omega\end{array}$
$\begin{array}{ll}R_{32} & 100 \mathrm{k} \Omega \\ R_{33} & 12 \mathrm{k} \Omega\end{array}$
$\begin{array}{ll}R_{34} & 1 \mathrm{M} \Omega \\ R_{35} & 2.2 \mathrm{k} \Omega \\ R^{2} & 12 \mathrm{k} \Omega\end{array}$

R_{36}	$12 \mathrm{k} \Omega$
R_{37}	$47 \mathrm{k} \Omega$

$\begin{array}{ll}R_{38} & 1.5 \mathrm{k} \Omega \\ R_{39} & 10 \mathrm{k} \Omega \text { preset }\end{array}$
$R_{10} \quad 100 \mathrm{k} \Omega$ preset

Semiconductors
 $\begin{array}{ll}T r_{7} & \text { 2N3819 } \\ T r_{8} & \text { 2N3819 } \\ T r_{9} & \text { BC109 }\end{array}$

$T r_{10}$	BC479
T_{1}	2 N 3820
T_{12}	2 N 3819
$I C_{t}$	Signetics NE561B
$I C_{2}$	709 operational amplifier
D_{3}	1 N 4001
D_{1}	1 N 4001
Capacitors	
C_{10}	$1-6 \mathrm{pF}$ preset
C_{12}	33 pF
C_{12}	$1-6 \mathrm{pF}$ preset
C_{13}	2400 pF
C_{14}	$0.01 \mu \mathrm{~F}$
C_{15}	$0.01 \mu \mathrm{~F}$
C_{16}	$0.1 \mu \mathrm{~F}$
C_{17}	1000 pF
C_{18}	$0.1 \mu \mathrm{~F}$
C_{19}	$0.1 \mu \mathrm{~F}$
C_{20}	10 pF
C_{22}	$0.1 \mu \mathrm{~F}$
C_{22}	$0.1 \mu \mathrm{~F}$
C_{23}	5000 pF
C_{24}	$0.1 \mu \mathrm{~F}$
C_{25}	200 pF
C_{26}	$0.1 \mu \mathrm{~F}$
C_{27}	$2 \mu \mathrm{~F}$

Transformer

T_{2}	Denco IT Blue
T_{3}	Denco IT Yellow
Meter	
M_{1}	$200-0-200 \mathrm{~A}$

Parts list for main power supply
(Fig. 11)

Resistors	
R_{1}	150Ω
R_{2}	150Ω
R_{3}	68Ω
R_{4}	$2 \mathrm{k} \Omega$ preset
R_{5}	$2 \mathrm{k} \Omega$ preset
R_{6}	$100 \mathrm{k} \Omega$
R_{7}	$100 \mathrm{k} \Omega$
R_{8}	$68 \mathrm{k} \Omega$
R_{9}	$68 \mathrm{k} \Omega$
$R_{l 0}$	$1.5 \mathrm{k} \Omega$
$R_{1 I}$	$4.7 \mathrm{k} \Omega$
R_{12}	33Ω
$R_{l 3}$	$4.7 \mathrm{k} \Omega$
R_{14}	33Ω

Miscellaneous

Miscellaneous	
$L P_{I}$	24V, 1W lamp
$L P_{2,3}$	12V, 0.1 A lamp
F_{1}	2A antisurge
F_{2}	3A antisorge
F_{3}	3A antisurge

Capacitors

Capacitors	
C_{1}	$0.1 \mu \mathrm{~F}$
C_{2}	$0.1 \mu \mathrm{~F}$
C_{3}	$0.1 \mu \mathrm{~F}$
C_{4}	$3,30 \mu \mathrm{~F}$ electrolytic
C_{5}	$10 \mu \mathrm{~F}$ electrolytic
C_{6}	$10,000 \mu \mathrm{~F}$ electrolytic
C_{7}	$5,000 \mu \mathrm{~F}$ electrolytic
C_{8}	$0.1 \mu \mathrm{~F}$

C_{9}	4.7 nF
C_{10}	$100 \mu \mathrm{~F}$ electrolytic
C_{11}	$0.1 \mu \mathrm{~F}$
C_{12}	$0.1 \mu \mathrm{~F}$

Semiconductors

$B_{1} \quad 4 \times \operatorname{Rec} 31$ (Radiospares)
$D_{1} \quad 26 \mathrm{~V}$ zener diode
$D_{2} \quad 24 \mathrm{~V}$ zener diode
$D_{3.4} \quad$ IN5401
$D_{5.6} \quad 3.9 \mathrm{~V}$ zener diodes
$I C_{1} \quad$ Reg 15 V (Radiospares)
$I C_{2} \quad 709$
$T r_{1,2,3} \quad$ 2N3055

Parts list for oven supply (Fig. 13)
Resistors

R_{15}	$15 \mathrm{k} \Omega$
R_{16}	3.9Ω
R_{17}	$1 \mathrm{k} \Omega$
R_{18}	470Ω
R_{19}	$1 \mathrm{k} \Omega$ preset
R_{20}	$4.7 \mathrm{k} \Omega$
R_{21}	$2.2 \mathrm{k} \Omega$
R_{22}	$2.2 \mathrm{k} \Omega$
R_{23}	$2.2 \mathrm{k} \Omega$
R_{24}	$27 \mathrm{k} \Omega$
R_{25}	$1 \mathrm{M} \Omega$

Miscellaneous

$\begin{array}{ll}F_{4} & 2 \mathrm{~A} \text { fuse } \\ F_{5} & \text { 2A fose }\end{array}$
Capacitors

C_{13}	$5,000 \mu \mathrm{~F}$ electrolytic
C_{14}	$2,200 \mu \mathrm{~F}$ electrolytic
C_{15}	$0.1 \mu \mathrm{~F}$
C_{16}	$0.1 \mu \mathrm{~F}$
C_{17}	$0.1 \mu \mathrm{~F}$

Semiconductors

B_{1}	$4 \times 1 \mathrm{~N} 5401$
D_{7}	C106B1 (s.c.r.)
D_{8}	1N4001
D_{9}	27 V zener diode
D_{10}	12 V zener diode
D_{11}	3.3 V zener diode
D_{12}	3.0 V zener diode
D_{13}	ST4
$T r_{4}$	MPS13
$T r_{5,6}$	2N3054
$I C_{3}$	741

Transformers

$T_{2} \quad 240 \mathrm{~V}$ Prim, 24V Secondary

Parts list for temperature controller (Fig. 14)
Resistors

R_{26}	$1 \mathrm{k} \Omega, 10 \mathrm{~W}$
R_{27}	$4.7 \mathrm{k} \Omega$ preset
R_{28}	$2 \mathrm{k} \Omega$
R_{29}	$2.2 \mathrm{k} \Omega$
R_{30}	47Ω
R_{31}	$22 \mathrm{k} \Omega$
R_{32}	$2.2 \mathrm{k} \Omega$
R_{33}	$20 \mathrm{k} \Omega, 5 \mathrm{~W}$
R_{34}	$1 \mathrm{M} \Omega$ preset
R_{35}	$150 \mathrm{k} \Omega$
R_{36}	$1.5 \mathrm{M} \Omega$

Miscellaneous
 $F_{6} \quad 2 \mathrm{~A}$ fuse

Capacitors

$C_{1 s}$	$32 \mu \mathrm{~F}, 450 \mathrm{~V}$ electrolytic
$C_{1 g}$	$100 \mu \mathrm{~F}$ electrolytic
$C_{2 o}$	$470 \mu \mathrm{~F}$ electrolytic
C_{22}	$0.1 \mu \mathrm{~F}$
C_{22}	$47 \mu \mathrm{~F}$ electrolytic
C_{23}	$0.1 \mu \mathrm{~F}$

Semiconductors

$D_{l 4}$	1N4005
D_{15}	20 V zener diode
D_{16}	2N6073
$I C_{4}$	MFC4060A
$I C_{5}$	JA424 (Jermyn)
$I C_{6}$	$\frac{1}{4}$ MC3301P
$T r_{7}$	2N2646
$T H_{1}$	THB11

zener, which is the best choice from the point of view of temperature coefficient.

Temperature control

This is necessary both in the case of the crystal, which is of prime importance, and in the case of the oscillator circuit as a whole. We found, in fact, that it was necessary to maintain the crystal itself within very fine limits of temperature (of the order of $0.01^{\circ} \mathrm{C}$) and the oscillator circuit as a whole within $\pm 0.25^{\circ} \mathrm{C}$ in order to achieve our designed accuracy of frequency stability.

For control of the crystal temperature, we had the good fortune to be given a suitable oven by Marconi Ltd, to whom we are therefore greatly indebted. The temperature controlling element in this oven is stable within $\pm 0.0014^{\circ} \mathrm{C}$. We did, however, encounter one difficulty with it-we originally fed its heater element, which consumes 36 W when active, from a.c. $(50 \mathrm{~Hz}$), but found that this induced hum modulation into the crystal. The obvious answer was to provide a d.c. source; but this in turn gave the problem of switching transients each time the thermostat switch cut in or out. The final solution was the power supply shown in Fig. 13, giving a stable heater supply with very slow switching action (approx. 3 s rise and fall times). Switch-on is accomplished by the thermostat switch grounding the base of $T r_{4}$, which therefore ceases to conduct; the short-circuit which it represents in the conducting state is removed from the output of op-amp $I C_{3}$; $I C_{3}$ output therefore swings positive because its input potentials are unbalanced, thus charging C_{14} through R_{17} which takes about 3 s . The potential on C_{14} controls the series Darlington pair $T r_{5,6}$, giving the required output of 24 V at the emitter of $7 r_{6}$, the output stabilizing, of course, when the potential at the slider of R_{19} equals that of D_{10} reference zener. It is worth noting, incideutally, that $D_{I o}$ is fed from within the feedback loop-a concept which has been discnssed previously in this journal ${ }^{3}$. Turn-off of the supply is achieved by the reverse action; thermostat switch opens, $T r_{4}$ base is switched via $R_{21-24}, T r_{1}$ con-
ducts and discharges C_{14} via R_{18} (and a further discharge path is provided through the output circuitry of $I C_{3}$ as the output voltage dies). Zener diode $D_{1 \prime}$ limits the voltage handled by the thermostat switch to approximately $1.5 \mathrm{~V} ; D_{l \prime}$ limits the maximum voltage applied to the base of $T r_{4} ; D_{8}$ has the not very obvious function of preventing C_{14} discharging back through the base-collector circuit of Tr_{5} should the incoming mains supply be switched offwe lost a couple of transistors before we woke up to this hazard! Zener diode D_{g} limits the maximum output voltage to approximately 26 V in case of any other accident. Resistor R_{21}, D_{11}, R_{23} and D_{7} form a final safety circuit. The thermostat switch is arranged mechanically so that gross overheating of the oven forces its live contact by thermal expansion against the live terminal of the heater winding. This passes a trigger current to D_{7}, which latches in across the supply and blows F_{3}.

For control of oscillator temperature, we decided that the most practical course was to temperature-stabilize the entire clock case using proportional temperature control. A 250 W mains-fed heating pad is used and control is by the circuit of Fig. 14.

Conclusion

As we said at the beginning of this article, construction of this project has taken almost three years. Looking back, it is sobering to realize how much this branch of technology has changed during even this comparatively short period. In fact we chose a fortunate moment to commence the project, being the period when bipolar digital i.cs had dropped to an acceptable price level but before their successors in technology (c.m.o.s.) had begun to be too demanding of attention. We have already given the reasons why we as a school undertook the project, and our aims in this respect have certainly been vindicated. Perhaps one proof of this lies in the fact that, of the two co-authors of this article, one is a master at the school and the other a former pupil.

References and acknowledgement

1. Osborne, J. M., "High standard low frequency source", Wireless World, Jan. 1973.
2. Clayton, G. B., "Op-amp used as phase sensitive detector", Wireless World, July 1973.
3. Letters, "Regulated power supplies", Wireless World, Nov. 1972; Anon, "Thermometer", Practical Electronics, Nov. 1973.
We also wish to acknowledge gratefully the gift by Marconi Ltd to the school of the highquality crystal oven used in this project.

Corrections

Fig. 2. Resistor R_{8} should be connected in the emitter lead of $T r_{3}$, below the emitter connection with $T r_{4}$. Two trimmer capacitors appear with the designation C_{5}. The correct C_{5} is connected across L_{l} and the second trimmer across the secondary of T_{1} should be C_{6}. The control output of the varicap control unit should have a $100 \mathrm{k} \Omega$ resistor connected in series.
Fig. 4. A connection should exist between the top end of R_{35} and the junction of R_{34} and C_{27} Fig. 9. Outputs to $I C_{3}$ should be labelled A_{1}, B_{1} $D_{I}\left(\operatorname{not} C_{1}\right)$ and A_{2}.

HF predictions

MUF (maximum usable frequency) at a given hour varies from day to day. HPF (highest probable frequency) and FOT (optimum working frequency) curves enclose the decile range of this MUF variation. The prediction is that on 24 days of a month (30 days) observed MUFs will lie between HPF and FOT, on three days MUFs will be greater than HPF and on the remaining three days MUFs will lie below FOT.

The above assumes a quiet ionosphere; on disturbed days MUFs will generally lie below predicted quiet FOT. Prediction of disturbed days in these notes, based on a 27 -day recurrence pattern, has been about 70% correct over the last two years.

THYRISTOR CONTROL OF D.C. MOTORS

We read with interest the article on thyristor control of d.c. motors by F. Butler in the September issue. The article itself was excellent but perhaps might be a little misleading, especially as on page 328 he states "Merely by up-rating the semiconductor devices the scheme appears to be applicable to large motors, certainly up to tens of horsepower". This is not strictly true for thyristor controllers using the "thyristor across the bridge technique" and unfortunately most users, power supply authorities and thyristor drive manufacturers would similarly disagree with that conclusion simply from the viewpoint of harmonic interference injected into a single phase supply.

However, the uninitiated reader might well fall into another trap as, again on the same page, Mr Butler refers to the requirement for "an overriding control which will limit the circuit current to a safe value". Alas, this could well be an understatement because many other would-be users have condemned thyristor motor speed controllers because "when they switched on the supply the fuses blew and kept on blowing". What they had forgotten of course was that the d.c. shunt wound machine, without some form of acceleration control and current limiting, presents almost a short circuit across the supply system with the inevitable result that the fuses blow.

To sum up, the article is indeed praiseworthy but should be regarded with a certain amount of caution, the maximum horsepower, from a reasonable design point of view anyway, being of the order of $2 \mathrm{~h} . \mathrm{p}$.-certainly not tens as stated in the article.
P. A. Bennett, .

Allen Bennett Ltd,
Sheffield,
Yorks.

Mr Butler replies:

Some of the points raised by Mr Bennett were discussed in my original article. However, they are worth stressing a little more forcibly, as he has done, and his letter gives
me the opportunity of adding a few comments on matters which were omitted or glossed over in my paper.

As regards power limitations of thyristor drives, a glance through the advertisement pages of technical journals shows that systems up to 260 kW ($350 \mathrm{~h} . \mathrm{p}$.) are readily available from companies such as Laurence, Scott and Electromotors, Maudsley and Hugh J. Scott. No doubt the larger installations operate from three-phase supplies, but in principle there is nothing against the use of single-phase sources, subject only to restrictions imposed by supply authorities.

A valid criticism of thyristor controllers is concerned with waveform distortion. To avoid this, variable phase-angle control must be abandoned and the "missing cycle" system used instead. In this system, thyristor firing either occurs at the start of a particular half-cycle or not at all. Though more acceptable to the supply authority, the scheme does not always appeal to the user because of the violent torque fluctuations at low speed and low power.

Starting problems with large d.c. motors are just as bad whether operation is from d.c. mains or from a.c. through a thyristor controller. In the first case, full field current is applied and a manual or automatic starter feeds armature current through a stepped resistor, sections of which are shorted out as the motor gathers speed. It is damaging if not dangerous to overspeed this operation.

With the thyristor controller, the motor must be started with fully retarded firing pulses; the control must then be advanced slowly or some overriding current-limit control must be fitted. The Mullard trigger modules MY 5001 and MY 5051 together give these facilities The simpler arrangement I described is perfectly satisfactory if used sensibly. Its only weakness is that the motor speed tends to drop as the load is increased. To counter this, a feedback loop, such as I mentioned in the article must be added. This, too, is available with the Mullard units.

The vital elements in my controller are the auxiliary power diodes and thyristor load resistor. These prevent the repeated fuse-blowing which is the bane of the simpler controllers. Another point, not previously mentioned, concerns the power factor of a thyristor drive. Delayed firing pulses obviously cause a lagging current to be drawn from the supply, though it is doubtful if matters are worse than when using under-loaded induction motors. Because of the distorted curreut waveform, precise correction by shunt capacitance across the supply line is impossible.
Since my article was written I have built a universal grinder, the wheel-head drive being from a variable-speed d.c. motor of $\frac{3}{4} \mathrm{hp}$. Grinding wheels between 1 and 6 in diameter can be run at the optimum speed, which can be measured by a noncontacting tachometer. A colleague, Mr B. Reid, developed a very useful instrument for this purpose. Unfortunately, variable speed grinders contravene the Factory Acts, so that they cannot be used industrially (overspeeding can result in burst wheels). The drive unit for this machine
has given no trouble. Another colleague, Mr John Lennan, has built a 1 kW controller to supply a $1 \mathrm{~h} . \mathrm{p}$. motor used to drive a 6 -in centre lathe. This, too, has given trouble-free service and I can see no reason why larger units cannot be built with every confidence. Fractional-h.p. motors pose no problems at all.

COMPONENT
 IDENTIFICATION

As an engineer, I welcome, as I am sure many of my fellows do, the now almost universal adoption of the BS 1825 resistance code. In this, and similar systems, the decimal point and multiplier are combined, so that a one-point-five ohm resistor is expressed as "1R5", and a point-onefive ohm component as "R15".

This is fine, but why, then, is a one hundred and fifty ohm device specified as "150R"? Surely, "K15" would be more logical, as it conserves the threecharacter format, and is no less informative. This system may of course be extended to capacitors and inductors, " n 10 " neatly replacing " 100 p ".

Such a modification to accepted practice is only justifiable if widely publicised and understood. I would welcome readers' comments on my suggestion.

S. J. Pardoe,

Altrincham,
Cheshire.

HORN LOUDSPEAKER DESIGN

A number of readers have pointed out that in many cases the minimum space necessary to enclose the rear of the bass loudspeaker apparently exceeds the optimum cavity volume for giving the correct upper cut-off frequency, often by a factor of four or five times. Since the cut-off frequency is inversely proportional to the cavity volume, this will have the effect of giving a serious "trough" in the overall frequency response before the mid-frequency horn takes over. The answer is to reduce the cavity to the correct volume by means of a circular plaster or wood moulding leading from the rear of the loudspeaker diaphragm to the throat of the horn. This technique has been well described by John Crabbe (Wireless World, Feb. 1958, my ref. 19).

A further point raised by several readers is the lack of detailed constructional data for the practical horns described in part 3. This was a deliberate policy on my part, because earlier experience had shown that no design seemed to suit more than a very small number of constructors. Indeed, I have already received a number of letters proposing alternative designs and configurations, and asking for my advice regarding their performanceadvice which in most cases is quite impossible to give.

Nevertheless, I am very sympathetic
towards those readers who require detailed constructional information, and I hope to make available early next year detailed drawings of a moderately-sized corner horn which gives a very satisfactory performance.
J. Dinsdale,

Olney,
Bucks.
As ref. 20 in the interesting series of articles on acoustic horn design by Mr Dinsdale (March, May, June issues), I would like to reinforce the warning on differential time delay given by Mr Hamill in the September issue. Experience with a 16 -ft bass horn (described in "Acoustic Compensation", Hi-Fi News, November 1964) confirms that the reproduction of transients is most subjectively accurate when I.f. and h.f. path delays are similar, although if some differential must be endured results are less unnatural if h.f. energy is received first. Experiments suggest that, as a rough empirical guide, the time differential introduced should not exceed $1 / f_{c}$, where f_{c} is the crossover frequency. Thus, for f_{c} at 400 Hz , up to 2.5 ms would be allowable, equivalent to a path difference of nearly 3 ft .

R. N. Baldock,

Harrow,

Middlesex.

DIGITAL
 SPEEDOMETER

Having designed and partly constructed a digital speedometer before coming to Saudi Arabia this summer, I was interested to note the similarity of approach in the design offered by Messrs Bishop and Woodruff (September, October issues). Perhaps you would allow me to make the following comments.

Firstly, by expanding the display to three digits and altering the count period generator to include a switched resistor, the display could indicate either miles or kilometres per hour, together, perhaps, with a suitable indicator to show which is being displayed.
Secondly, in my design I used an optical pick-up from a modified speedometer, and by doing this was able to dispense with the frequency multiplier. This reduces the circuit complexity quite considerably, but requires knowledge of the individual speedometer gearing to calculate the correct number of slots in the rotating disc. I have also considered the use of storage and calculation logic to display acceleration. But this seems to be adding much cost and work for very little gain.

I have been thinking about the addition of variable retard or advance to a thyristor ignition circuit. Perhaps an automobile engineer could tell us whether such a control on the dashboard would be of advantage in the fields of performance or economy?

During the petrol crisis last winter I connected a reed relay and light bulb to indicate each stroke of the electric petrol
pump. Although the pump frequency varies with engine speed, and thus the display cannot give a true indication of m.p.g., it is certainly a constant-and effective-reminder of the absolute rate of flow of fuel!
N. H. Jennings,

Dhahran,
Saudi Arabia.

CALCULATOR AS SIGNAL SOURCE

At the risk of appearing frivolous, may I suggest a possible secondary application for the now ubiquitous electronic pocket calculator?

Recently, while re-aligning a pre-war a.m. broadcast receiver, it became necessary to convert wavelength (in which the set's tuning scale was calibrated) into frequency and this simple calculation was carried out on a Sinclair "Cambridge", which I keep handy in the workshop. With the set switched on it was noticed that a high pitched buzzing emanated from the speaker whenever the calculator was operated and that this note could be altered in pitch as the various function keys were depressed.

Analysis of the "r.f. field" with an oscilloscope indicated a strong square wave radiation extending up to 3 MHz . Subsequent experimenting suggested that the calculator acts as a very effective signal injector and my "Cambridge" has in fact been used as such (in addition to its normal intended use, of course!) in the repair of long- and medium-wave radio receivers for the past few months. It would be interesting to hear other readers' com-ments-other calculators currently available may yield quite different results and may possibly radiate at frequencies above 3 MHz .
A. D. Thomas (GW8DXA), Cardigan,
West Wales.

F.M. TUNING INDICATORS

I have followed with interest the correspondence on f.m. tuning indicators, and I think readers may be interested in my approach to the problem.

My circuit arrangement has the advantage of the two-lamp system, i.e. it indicates direction of mistuning and also has the additional advantages of maximum sensitivity at the tuning point and requires no judgement to be made by the operator.

These features are obtained by putting the two lamps (l.e.ds) in the feedback loop of an op-amp (741). The high open-loop gain of the 741 and the forward voltage drops of the l.e.ds combine to prodnce a very sensitive null detector. The a.f.c. reference voltage is fed to the non-inverting input of the 741 and the a.f.c. voltage to the inverting input via a second 741 as an amplifier/buffer. When the set is on tune the output of the 741 will be at mid-rail voltage and neither l.e.d. lit, but only a small tuning error is required to swing the output to the "knee" of the l.e.d. characteristic, turning it on and so indicating mistuning in that direction. The l.e.d. current in the "off tune" state will be automatically limited by the built-in current limit of the 741. To reduce the sensitivity to usable levels a shunt resistor is connected across the l.e.ds, otherwise the output level will tend to sit so that one or other of the l.e.ds is conducting. The gain of the buffer and the value of the input resistor, which sets the l.e.d. current, are chosen to suit the a.f.c. voltage available. Typical values are given on the diagram. This circuit is used with an RCA CA3089 i.f. chip, which has the a.f.c. output in the form of a current. Silicon diodes across the a.f.c. resistor limit the range of the a.f.c. in a similar manner to the design by J. A. Skingley and N. C. Thomson (W. W. April, 1974).

The capacitor across the first 741 removes the modulation components from the a.f.c.
M. G. Smart,

Sunbury-on-Thames,
Middlesex.

DOPPLER IN LOUDSPEAKERS

Mr Edgar's novel approach (August Letters) made me think again about this matter, and I came to the conclusion that not only does Doppler effect physically exist when loudspeakers are playing (as James Moir confirms in your October issue) but that it exists in general whenever two or more sounds are in the air together.

The fact that in most cases the effect is negligibly small does not affect the principle. Or can someone explain why (e.g.) a large-amplitude low-frequency waving of the air to and fro does not frequencymodulate a small-amplitude high-frequency wave (from another source) being carried by that sinusoidally moving air?
"Cathode Ray".

MAKING P.C.
 BOARDS

For some years now I have been using Letraset for making printed boards. Perhaps your readers would like to know of this method. As a start I can recommend sheets number $557,556,804$. About three years ago I contacted Letraset in the U.K. and they showed interest. Perhaps if someone produced a greater variety of connections then the use of this method would become more popular.

I would like to put these points forward: 1 , clean the copper board well, e.g. with steel wool and warm water, then dry completely and allow to reach room temperature, which should be at least $20^{\circ} \mathrm{C} .2$, use light pressure when rubbing; do not hurnish, just press down with finger. 3 , when making joints, "overlap". 4, to cut just use a sharp knife. 5, mistakes are easily removed by scraping with a plastic tool on tape, but beware of this as it could leave a trace of adhesive which will prevent etching.
H. Wedemeyer,

Vanse,
Norway.

LOUDSPEAKER DAMPING

Mr Marshall refers in a letter in the October issue to a contribution (Transients and Loudspeaker Damping) I made in May 1950 on the subject of the damping factor of amplifiers. Reference to the contribution indicates the degree of misunderstanding commonly involved in thinking that high damping factors are significant.

Briefly, motion of the loudspeaker voice coil is "damped" by the motionally induced current circulating in the voice coil-amplifier circuit. The amplitude of the current is controlled by the total impedance of the circuit, amplifier + voice coil + wiring. The amplifier output impedance obviously has no significant effect on the total current when it is only some 10% or less of the total circuit impedance. Thus extremely high damping factors, i.e. very low amplifier output impedances, are of no engineering significance in damping the oscillation of the voice coil; indeed they may impair the performance of a loudspeaker. The contribution includes some oscillograms showing the actual effect of amplifier output impedance on the transient oscillations of the voice coil of a typical loudspeaker.

It is also worth noting that while the amplifier output circuit impedance may have some effect on the transient oscillations at low frequency, the cone is so loosely coupled to the voice coil in the middle and high frequency bands that the cone or small areas of the cone can continue to oscillate although the voice coil is stationary.

As the contribution demonstrated, there appears to be no engineering advantage in achieving damping factors much greater than about ten. In many instances there are positive disadvantages in using amplifiers with high damping factors.
James Moir,
Chipperfield,
Herts.

TRIALS-AND TRIBULATIONS!

A photograph of a charming young lady holding one of the new push-button dialling telephones (STC Trimphone, I believe) appears on p. 374 of your October issue. The caption states that if the London trials "go as the Post Office expects" the new phones will be made available progressively in other parts of the country.

If one compares the telephone keyboard with that used on calculators it will be seen that only four figures-4, 5, 6 and 0 -are in the same positions. (See, for example, the calculator advertised on p. a53 of the same issue.) It does not require much imagination to foresee the sort of confusion which could arise if the two instru-ments-calculator and push-button phone -are side by side on a desk.

The calculator keyboard has been standardized for some time. Whey then should a telephone manufacturer and/or the Post Office introduce a variant? It can, of course, be argued that the Trimphone keyboard with the zero after figure 9 is in keeping with the sequence of figures on the normal telephone dial. With the logic of this one would agree, but with the calculator becoming increasingly a tool of everyday life, would it not have been logical for the new phone keyboard to conform with what is established practice in another branch of electronics?
Harold Barnard,
Leigh-on-Sea,
Essex.

AUDIO VISUAL GROUP

May I inform you that the British Kinematograph, Sound and Television Society has, for some time past, been planning to improve services to existing members working in the audio visual field and to fill a suspected need of potential members for an organisation that will provide papers, presentations, technical articles and technical information on audio visuals.

Although the Society originated as a film orientated organisation it has widened
its scope by entering the television and sound fields where appropriate to its aims and objects and now has considerable experience and some reputation in the proper integration of these three separate techniques. Where better then to find the resources and the skill in the efficient use of film, television, video, sound and vision techniques used in combination?

The very nature of the Society's undertaking requires the closest co-operation with all organisations catering to the separate needs of those techniques that go to make up audio visuals, and the BKSTS has every intention to provide its members not only with their brand of information but information on the activities of other organisations bearing on audio visuals.

In this connection I hope that we can be of mutual service to Wireless World and to its many readers, some of whom may be looking for an organization to serve their needs in the dissemination of technical information which, in these days, comes and goes in such prolific quantity and at such a rapid pace.
The BKSTS Audio Visual Working Party has, as its brief, the task of improving existing services and of creating a climate that will encourage an increase in our 2,000 strong membership.
Robert R. E. Pulman,
BKSTS Audio Visual Working Party, London, WC1.

ELECTROSTATIC FORCES ON PICKUPS

Like Mr Hide I have also found when using an SME arm under a plastic cover that the arm would occasionally lift from the playing surface. I have found that a cure could be effected by damping the cover by means of a damp cloth or by using an anti-static cleaner to clean the cover (similar to the method of preventing dust accumulation on TV screens).

However, I also suffered from snap, crackle and pop, and, blaming this on central heating and a rather dry atmosphere, I now use a wet sponge in a tray on the baseboard of my plinth, inside the cover. This overcomes the spurious clicks and no longer is the pickup arm liable to lift from the record, presumably because the slight increase in humidity inside the plinth inhibits the development of electrostatic charges on record or cover.

Previously the pickup could be lifted off the record simply by rubbing on the outer surface of the cover (not to be recommended with an expensive stylus and one's favourite disc) wheu the pickup could be induced to lift and return to position to the outside of the record. With this primitive humidifier device in situ no amount of rubbing on the cover will induce the pickup to miss a note.
Alec West,
Milton Keynes,
Bucks.

WESCON 1974 convention

Electronics in medicine microprocessors speech recognition

by Aubrey Harris
University of California

The 1974 WESCON (Western Electronic Show and Convention), the big electronics event of the year in the Western United States, was held September 10 to 13 in Los Angeles. Many of the papers this year stressed practical applications and only a small number of new items were displayed in the show: the big semiconductor manufacturers were notably absent.

One of the areas in which electronics is becoming more and more needed, and accepted, is the field of medicine. Perhaps the earliest application of electronics was in the use of x-rays last century, but since then a whole host of uses have been developed: electro-cardiograph and electroencephalograph apparatus, pacemakers, hearing aids, myo-electric control and many measuring and monitoring equipments. These latter are of particular importance for such uses as alerting medical personnel in the event of a change in vital body functions of critically ill patients.

A paper by J. R. Singer, T. Grover and A. Poggio, "Progress in blood flow
measurements" described their work in this area using nuclear magnetic resonance (n.m.r.). This technique has advantages because blood flow can be determined without inserting probes or other devices into the subject to be tested. A large percentage of blood is water, and it is the magnetic properties of the hydrogen nuclei of the water molecules which are used in the measurements.

It is known that the hydrogen protons in the blood are magnetic and possess spin, and each proton is like a gyroscope or spinning magnetic top. When placed in an external magnetic field, the "magnetic tops" align thernselves north-to-south with the external field. In fact, this alignment is not immediate but takes about three seconds in pure water and in venous blood (because of the paramagnetic nature of the haemoglobin molecules) the protons require only 0.5 sec to align (Fig. 1). When the alignment has taken place the protons as a group behave as a gyroscope and precess. That is, just as a spinning top will do, the axis tilts out of the vertical
and describes a cone due to the force of gravity. In the case of a fluid in a magnetic field, the hydrogen protons precess in a similar way (Fig. 2).

The tilt may be increased to a greater extent by applying a radio frequency field in such a way that the magnetic action of the r.f. provides torque to tip the spinning protons. A coil carrying a few milliwatts of pulsed r.f. power produces a rotating magnetic field (during each pulse) and when the rotation is equivalent to the rate of the spinning protons they will tip. In these experiments the r.f. was at 10 MHz .

Another coil is used to detect the tipping and is arranged to be perpendicular to the excitation coil, some 3 cm away. The precessing protons, being magnetic, induce small signal voltages in the detector coil which, after amplification, can be measured. Protons tipped by the r.f. will produce a different output in the detector coil compared to untipped protons; this is because of the different angles which the axes of the tipped and untipped protons make with the axis of the detector coil.

Fig. I. Hydrogen protons in the blood being aligned during their passage through a magnetic field.

Fig. 2. Representation of the proton or group of protons as a spinning top which precesses about the direction of a magnetic pole. A top precesses about the gravitational field in a familiar way.
(a) The proton has spin like a top and precesses about the magnetic field. (b) The description is very similar even though the proton motion is invisible.

(b)

Fig. 3. Schematic arrangement for
determining blood flow using nuclear magnetic resonance. The time taken (t) for protons "tipped" at the excitation point to reach the detector coil is used to calculate flow. Typical spacing (d) is 3 cm .

Fig. 4. Block diagram of "acumonitor" for use in acupuncture.

Fig. 5. Voice entry encoder: the perceptual space and its relationship to the sine $\left(U_{1}\right)$ and cosine $\left(U_{2}\right)$ functions. Filter frequencies are also indicated.

Thus, it is possible to determine at the pick-up coil when protons in the blood which have been tipped by an r.f. pulse are passing the detector point. The flow rate may then be determined by noting the time taken for tipped protons to move between the excitation and detector coils, and, knowing the spacing between the two points, the average flow velocity may be determined (Fig. 3).

One problem in using this system under clinical conditions is the cost of the large magnet required, which has a magnetic flux density of about 2500 gauss. These may be produced in quantities economically but are expensive in small, experimental numbers. It is hoped that this restraint can be soon overcome.

A related series of papers under the collective title of "Psychotronics" was chaired by Dr Thelma Moss of the Neuropsychiatric Institute of the University of California, Los Angeles. Although not strictly directly related to electronic equipment, a tremendous interest was aroused amongst engineers at WESCON with about 1200 of them attending an evening meeting on the subject. This serves to emphasize the growing appreciation and realization by many professionals that there is a large number of events and "happenings" which cannot be explained by our present scientific knowledge.

My apologies to those of my readers who are disbelievers (or pre-believers) of such esoteric manifestations as are described hereunder; I, too, was among your erstwhile millions-now, no longer so.

The areas covered included a laboratory investigation of telepathy, some new work in Kirlian photography, a remarkable demonstration of changes in human physical states by Jack Gray using his own personal energies of an, as yet, unexplained nature, and some work on an "acumonitor" by B. E. Taff. He explained that there has been increasing interest in the past few years by the medical profession in the Western world in acupuncture, the ancient Chinese method of preventive medicine and pain reduction. Their theories state that there are 12 meridians in the body, acting as prime "energy circuits": for perfect health the energy in these circuits must be balanced properly between the meridiaus. Acupunc-
ture is used as an aid in obtaining the correct balance. The meridians are thought to be a fourth (and distinct) body system in addition to our blood circulation, lymph and nerve systems: The actual nature of the "energy" in the meridians is not clear but has been shown to be real.

There are various methods of stimulation for correcting the energy imbalance in the circuits: (a) by chemical means, (b) by massage or pressure (acupressure), (c) by needles (acupuncture), (d) by electrical energy injection, and (e) by laser beams.

These latter two require a good deal of understanding and sophisticated equipment; however, it was demonstrated in the USSR that a mild intensity laser beam directed at the meridian above the lip caused immediate cessation of an epileptic seizure. Work has been directed at devices capable of determining the location of the meridians. The Russian scientist V. G. Adamenko wrote in 1972 about a device called the "tobiscope" enabling measurements of resistance points on the body to be made, which show a one-to-one correspondence with the known oriental acupuncture meridians. The device appears as a metal cylinder with a probe at the top, insulated from the metal body. In use, an operator holds the cylindrical part and applies the probe to the skin of the subject. The operator completes the electrical circuit by maintaining contact to the subject's body with his free hand.

Networks of low resistance can be traced which correspond within a millimetre or so to the acupuncture meridians. These networks are differentiated from skin probing of other areas of the body by a ten-to-one resistance ratio. Approximate measurements recorded are 0.5 to 1.5×10^{5} ohms at the meridians and about 10^{6} ohms on other areas. Due regard is taken of shunt low resistance paths due to moist skin. For this work low values of direct current were used (a few microamps at four volts) but some experiments have also been successfully made with a.c. at 1000 Hz .

A more sophisticated device designed and developed by Taff is the "acumonitor" mentioned above, basically a single channel d.c. analogue/digital metering device. It has stainless steel electrodes, one a 2 mm probe and the other a hand-held circuit return. A block diagram is shown in Fig. 4: the actual circuit is still proprietary. The probe signal is fed through several stages of i.c. f.e.t. operational amplification providing an input impedance of about $2 \times 10^{8} \mathrm{ohms}$. In searching for the acupuncture meridians an alarm is set to trigger whenever potential is indicated at over 37 millivolts and resistance under $2.5 \times$ 10^{5} ohms. However, parameters are also visually displayed with an l.e.d. digital display.

The "acumonitor" has been used on a subject under stimulation, to measure changes in readings at specific locations. In one test, voltage measurement increased by a factor of five and resistance decreased by 40% during two-minute stimulation of the subject by a $15-\mathrm{mW}$ helium-neon laser.

Ever since the introduction in 1948 of
the first solid-state active device, the transistor, there has been a significant impact every few years or so, with the development of more highly sophisticated devices-i.cs, m.s.i., 1.s.i. The latest in this line of development is the microprocessor. The term microprocessor (often abbreviated to $\mu \mathrm{P}$) is used to describe the central processor unit functions of a computing device implemented by one or a few m.o.s./.s.i. chips. Significant differences between the $\mu \mathrm{P}$ and the minicomputer are the lower cost, reduced power requirements and often, lower speed. An important advantage of the $\mu \mathrm{P}$ over the other forms of l.s.i. is its capability of being programmed.

There were some 19 papers on $\mu \mathrm{P}$ presented in what was called the "microprocessors revolution". M. M. Saba and J. D. Grimes, in their contribution "Microprocessors: a component for all seasons", showed that the $\mu \mathrm{P}$ has really arrived and is now considered a single component characterized by such features as data word sizes of $2,4,8$ or 16 bits, macro instruction cycle times between 300 ns and $60 \mu \mathrm{~s}$, instruction sets between $50-100$ items, memory address space ranges from 256 words to 65 kbytes, frequently requiring from ten to 40 s.s.i. or m.s.i. packages to interface them with other sub-systems. The $\mu \mathrm{P}$ presents itself as a powerful, inexpensive computing device, the implications of which upon the electronics and computing industries are not yet appreciated.

The uses to which the $\mu \mathrm{P}$ is now being applied are basically in the areas of calculation and control-type functions. It is often used as an alternative to hardwired random logic and has been found an inexpensive alteruative to the minicomputer, where speed is not of the essence. Such applications are, for example, point-of-sale and graphic terminals, and credit card verification systems. According to a report by Quantrum Science Corporation there were 100,000 units in the USA at the beginning of 1974; and the number is expected to increase to 800,000 units by the end of 1975. By 1976 the cost of a unit is predicted as either $\$ 10$ or $\$ 130$-depending on who you want to believe.

In reviewing the present and future trends of the market for microprocessors, Robert F. Wickham indicated that their role would be in "dedicated" systems such as computer peripheral controllers, office equipment, computer terminals, communications controllers, as well as test and measuring instruments offering programmability and "intelligence".

In the equipment show a remarkable piece of equipment was shown by Perception Technology Corporation. It was "voice entry", a device which provides a direct interface between the human voice and a computer systern, making it possible for any person to address a machine in appropriate words chosen from one's own language.

This apparatus could be useful for controlling equipment or machine systems in situations where both hands and feet are
already occupied or where there are restrictive physical limitations, such as in the cockpit of a test vehicle or where operations upon micro-components must be made while viewing the device through a microscope. Further uses are in directing materials, handling, sorting and in controlling physical access by personal (voice) identification. As the input is an audio signal, remote control of systems is possible by telephone.

The basic unit, designated the VE-100, is suitable for table top or rack mounting and costs $\$ 6,198$. This provides an interface to a computer (such as a PDP/8E with 8 k of memory) which is necessary for operation of the unit. The vocabulary is normally the digits "zero" to "nine" plus control words "enter", "cancel", "reset", and "function". The machine can be trained to recognize other words.

Machine recognition of speech regardless of the speaker's characteristics is a formidable problem and many systems so far have had a high rate of inaccuracy and speaker dependence. A novel solution is provided by the use of a set of transformations to map speech spectral parameters into a perceptual space.

The problem of accuracy of recognition can be appreciated when it is observed that the variation, in spectral terms, of a given phoneme between different speakers is often greater than the difference between two distinct phonemes. The problem is compounded because, even with a single speaker, monitoring shows that spectral differences occur at different times, contexts and circumstances which are comparable to the differences between speakers.

Speech parameters can be described by spectral distribution and to a general degree may be represented by points in a two-dimensional perceptual space approximating a circle (Fig. 5). A combination of more than one frequency will be indicated by a point within the figure. (This is somewhat similar to the representation of coloured light in the CIE chromacity diagram. However, the speech spectral distribution curve is continuous.) The co-ordinates of the curve approximate to sine and cosine shapes, and are derived from Fourier transformations. In the equipment the functions U_{1} and U_{2} are reproduced by six active bandpass filters, one at each of the frequencies noted, each with a Q of 1.67 and two filters with slope at $24 \mathrm{~dB} /$ octave at 300 Hz and 500 Hz to provide the required shaping.

Phonetic segments are determined by noting changes in energy levels and transitions between voiced and unvoiced states. Then segments are fed to an 8×8 matrix space in the computer and these are compared with stored speech information in matrix form. A number is assigned to each of the comparisons of a given segment with all the stored patterns. The number is related to the closeness of the dominant vowel in the input vs. the stored pattern; the closer the number is to zero, the better the match. In a given word up to four segments will be recognized and

Fig. 6. Wavetek model 152 programmable function generator.

Fig. 7. Tektronix 31/53 data acquisition system.
compared for the matching process.
The system consists of speech processing circuits, a mini-computer and an interface between them. In operation an input word is processed and its identity verified within 160 ms of the end of the spoken word. During this interval the spectral distribution of the speech signal is determined by the filters, whose outputs are rectified, smoothed, sampled every 10 ms and input to a memory. The computer tabulates them to form the data points of the perceptual space. A comparison is then made with the related, stored pattern and operates on a decision algorithm built upon a broad statistical base, thus gaining a large degree of speaker independence and accuracy.

Regarding this latter aspect, accuracy is claimed to be from 90% to 99%. The higher figure may be achieved by "training" the system, by repeating via the input microphone the desired vocabulary and voice.

A new approach in programmable function and waveform generation was demonstrated by Wavetek. The Model 152 equipment (Fig. 6) allows, either from a manual keyboard on the instrument or remotely by an ASCII code, control of frequency, amplitude, waveform, d.c. offset, and trigger mode, as well as continuous phase variations of functions from 1 Hz up to 100 kHz , with harmonic distortion of less than 0.1%. (The models $158 / 159$ have frequency ranges from 1 Hz to 3 MHz and can be programmed for 180° phase changes only.) Sine, triangle, ramp and square waveforms may be generated with output voltages of from 10 millivolts to 10 volts p-p into 50 ohms load impedance.
The programmable function generator has many applications in automated testing, where its output parameters may be controlled remotely from a computer in response to previously set up programmes and to adapt to special conditions. Remote programming is accepted into the unit as 7-bit parallel ASCII coded characters; up to nine instruments may be connected to a common line, controlled from one source. The unit will respond to input up to 1 Mbyte per second; the selected output function becomes stable within 1 ms in all cases. With the variable phase feature, this parameter may be controlled with 4 -digit resolution referred either to its own sync output or an external sync source.

Tektronix were displaying the DM43, a precision digital multimeter for use with the 465 and 475 portable oscilloscopes. The meter has $3 \frac{1}{2}$ digits, five 7 -segment l.e.ds and will display voltages from 1 V to 1200 V , resistance values from 0.1Ω

to $20 \mathrm{M} \Omega$, temperature from $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ and also differential time delay measurements, which are resolved at an increased factor of ten times compared to the precision delay time dial on the oscilloscope.

Time measurements are made by selecting the first of the two points by means of the oscilloscope's delay time position control. The meter is set to zero at this point. Next the delay time position control is used to select the second point and the delay is read out directly on the meter. This direct time readout capability has application in checking the critical timing of digital systems.

Temperature probing of semiconductor power components can be accomplished while signal waveforms for the device are monitored at the same time. Test leads used for voltage, resistance and temperature are independent of the oscilloscope into which the meter is incorporated. Front panel pushbuttons provide separate selection of function and range.

Tektronix displayed for the first time the $31 / 53$ Calculator-based Instrumentation System, which is capable of data acquisition, transformation and analysis (Fig. 7). Its main feature is its ability to
log, compare and analyze measurement data as it arrives. The user can also store the data. The unit has many of the capabilities of the minicomputer, but it is cheaper and easier to use, as there is no need to learn a computer language to operate it. In many existing systems information is gathered by reading meters, strip charts or printed lists. Then it is interpreted or compiled and entered by hand into a calculator or a computer for statistical analysis or for storing on cards or tape. In the $31 / 53$, the process data gathering, data analysis, documentation and permanent storage can be handled by the single calculator system. It combines the concept of a stand-aloue data recorder and data analysis computation.

The system includes the Tektronix 31 calculator, a mainframe power source, an iuterface plug-in, standard software for data acquisition and analysis, and standard options and accessories. The cost is $\$ 3,995$.

Data acquisition is accomplished by selected instruments from Tektronix's TM 500 line of modular measurement instruments. The system mainframe allows these modules to be plugged-in in any desired configuration.

$C^{\circ} \mathrm{Clv}^{\circ}$ deces

Electronic changeover switching

The circuit shown in Fig. 1 effects a changeover function when only a single pair of contacts is available. When the switch is open, only input A is admitted to the output via R_{4}. When the switch is closed, input B is admitted to the output together with an inversion of the input A signal, which cancels the direct sigual A and leaves only signal B present. A gain of two is given to input B by the op-amp circuit, to bring the system gain to unity for both inputs A and B by compensating for the attenuation of signal B through R_{s}

and R_{1} (assuming source impedance at input $A<6.8 \mathrm{k} \Omega$. The degree of attenuation of the unselected input depends on the tolerances of R_{1}, R_{3}, R_{4} and R_{5}, and if more than about 30 dB rejection is required, some trimming may be necessary.

Electronic switching can be accomplished by substituting an f.e.t. to replace the switch, as shown in Fig. 2. The 5nF capacitor prevents the f.e.t. from cutting off during the positive half-cycles above about 100 Hz which exceed the f.e.t. piuchoff voltage when in the on state.

In certain multi-chaugeover switch functions the operational amplifier could be a section of a programmable op-amp.
M. J. Sells,

Reading.

Improved simple d. to a. converter

Readers may have difficulty in getting a satisfactory performance from D. James' digital to analogue converter (W.W. June, page 197) over a reasonable temperature range especially if the 7490 is driving other t.t.l. This is because of the necessity for equal logic 1 output voltages from the 7490 as well as matched $v_{b e}$ for the transistors. A better performance with similar
economy can be achieved by using a 7407 hex buffer as shown in the accompanying diagram. The effect of changes in $v_{\text {cesat }}$ with temperature can be minimized by connecting the non-inverting input of the op-amp to the output of an unused buffer at logic 0 . The 7407 could be replaced by a 7405 if temperature compensation is not required or for the addition of a less significant digit.
R. J. Chance,

Birmingham.

RIAA-equalized pre-amplifier

The amplifier shown in the diagram was designed to combine the advantages claimed by proponents of either side of a recent correspondence in this magazine. It has the low noise (less than -70 dB ref. 5 mV input) and high overload capability (almost 30 dB above 3 mV input) of a series feedback-pair design, and the low distortion (0.05% i.m. distortion at 2 V r.m.s. output) of the Liniac.
The first stage is basically a Liniac-type circuit with emitter resistors, one of which
reduces the d.c. gain, and thus the amount of d.c. feedback applied, improving transient response over the usual feedback pair arrangement. This feeds into a second, $\times 10$ stage, which, contrary to normal practice, has part of its emitter resistance undecoupled, preventing shunting of the first stage high impedance dynamic load by this second stage input impedance.

S. F. Bywaters,

University College,
London.

Dual limit comparator using single op-amp

This circuit was designed to give a positive output when the input voltage exceeded plus or minus 8.5 volts. Between these limits the output is negative. The positive limit point is determined by the ratio of R_{t}, R_{2}, and the negative point by R_{1}, R_{3}. The forward voltage drop across the diodes must be allowed for. The output may be inverted by reversing the inputs to the operational amplifier. The 709 is used without frequency compensation.

K. Pickard,

Otley, Yorks.

Micropower low-noise amplifier

This amplifier has ultra-low power requirements $(1.35 \mathrm{~V}, 4 \mu \mathrm{~A})$, low noise (about $10 \mu \mathrm{~V}$ pk-pk equivalent input noise with $10 \mathrm{M} \Omega$ source impedance), $10 \mathrm{M} \Omega$ input impedance, and a high voltage gain of 2000. It was designed for use in implanted transmitters which detect brain and heart potentials.

High input impedance is attained by current-starving $T r_{1}$, which operates in the 200 nA region. The 2 N 4250 transistor was chosen because its gain remains high $(\beta \times 200)$ at very low voltages and currents. It is, in addition, a low-noise transistor. The low current in $T r_{1}$ limits the bandwidth of the amplifier to about 5 kHz , but this is acceptable for biological work. The input impedance is determined primarily by the $10 \mathrm{M} \Omega$ bias feed resistor. The transistors $T r_{2}$ and $T r_{3}$ provide additional gain.

The amplifier had gain constant to within 10% over a $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ temperature range. It is self-biased, with $T r_{4}$ clamping the bias line, to prevent lowfrequency instability. The low-frequency roll-off is determined primarily by C_{l}, but when changing this capacitor C_{2} should also be altered in the same ratio. This will prevent another form of lowfrequency instability which occurs when C_{2} is too small. Capacitor C_{3} adjusts the high-frequency cut-off point, and may be onitted if desired. As shown, the amplifier has $3-\mathrm{dB}$ points at 3 and 80 Hz , suitable for heart-beat monitoring.

C. Horwitz,

University of Sydney,
Australia.

WW Diary

The Wireless World Diary for 1975 is now available from booksellers price 62 p or direct from the publishers, T. J. \& J. Smith Ltd, Deer Park Road, London SW19 3UT, at 72 p including postage and packing.

Liquid-cooled power amplifier

by I. L. Stefani and R. Perryman

The amplifier to be described in this article was developed as part of a research programme in which it was employed to excite magnetic specimens. The original model was designed to produce peak currents slightly in excess of 10 amperes at frequencies ranging from zero to $5 \mathbf{k H z}$, but operating experience indicated that the equipment was capable of being uprated by a substantial amount, and it is thought that publication of the constructional details might be of use to workers in other fields.

The need to operate with d.c. and at very low frequencies indicated that some form of transistor bridge should be used, and after one or two simple air-cooled arrangements had been tried, it was decided to experiment with liquid cooling. The first tests used power transistors mounted in pairs in two water-filled copper tanks, and while this arrangement enabled the ratings to be raised by some 30%, the onset of thermal runaway was rather sudden and it was felt that the small increase in output was a poor return for the extra complications. The tests proved to be useful, however, as they pointed the way to a more satisfactory form of liquid cooling. The following points were noted:

Natural circulation was slow and hard to start.
Stagnant layers of fluid collected round the transistors.
Relatively large thermal gradients appeared to exist in the transistor cases.
As a result of these observations a new series of tests was undertaken with the output transistors mounted in such a way that each received a turbulent flow of liquid close to the active element. Forced circulation and a fan-assisted heat exchanger were also incorporated, although flow from a tap was found to be very effective.

The electrical circuit was initially designed round two complementary pairs of emitter-followers connected so that each pair formed one half of a bridge, but it was subsequently thought that performance could be improved if the output elements were used as currentboosters assisting emitter-followers of lower rating. A scheme of this type was employed by I. Hardcastle and B. Lane ${ }^{1}$ and its success influenced the final

1. High power amplifier. I. Hardcastle and B. Lane. Wireless World, Oct. 1970, p. 477.
decision to adopt this arrangement. Difficulties were encountered with output voltage stabilization and with the design of a gain control which did not cause a shift in the d.c. balance at the output. These points will be taken up later.

Various liquids were considered for the coolant, but the final choice was water with a little "Prestone" inhibitor added.

Output stage

The general layout of the liquid-cooled output stage is shown in Fig. 1. Cool liquid is pumped into a small tank to equalize the pressure applied to the branches and the coolant is then passed through four short lengths of polythene tubing to the transistor bank. After cooling the transistors the warm fluid is returned to another tank from which it flows to a fan-assisted heat exchanger of the type commonly used for car heating. The complete fluid circuit is outlined in Fig. 2. Fig. 3 shows the constructional details of the flow and return tanks which are identical except for the lengths of the inlet and outlet pipes. The transistor mountings are cut from $\frac{1}{4}$ in brass plate to sizes given in Fig. 4, which also shows the manner of bending the pins and the construction of the cover plate. The skewing of the bent portions of the pins prevents contact between adjacent transistors when they are mounted in a bank. Before assembly, leads should be soldered to the pins, and the brass surfaces should be sealed with a little "Silcoset" sealing compound. Great care should be taken when sealing the transistors to the mounting blocks for if any seepage occurs in the regions of the base pins, the high current gains will make the booster stage virtually uncontrollable. Normal motor gasket sealing compounds have not been found to be satisfactory.

When the amplifier is operating, cool liquid is pumped into the lower tank where

Fig. 1 Mechanical layout of liquid-cooled power output stage

Fig. 2 Complete fuid cooling circuit

Fig. 3 Dimensions and constructional details of flow and return tanks.
it divides into four streams, each stream passing through a $\frac{5}{16} \mathrm{in}$ dia. hole in the mounting block to strike the transistor at a point immediately opposite its active element. The water subsequently passes up the $\frac{3}{32}$ in wide slot to the $\frac{1}{4}$ in diameter exit hole and back to the return tank.

The output circuit

The operation of the output stage may be readily understood by reference to Fig. 5, which shows emitter-followers $T r_{2}$ and $T r_{3}$ supplying a small current to a load. The resistors R_{2} and R_{3} have little effect on the performance of the transistors other than to cause a slight reduction in their maximum voltage swings, but the voltages developed across these resistors may be used to operate current boosters in the form of complementary power transistors $T r_{4}$ and $T r_{s}$. The collector of each booster acts as a curreut source and forces a large current into the load without substantially altering the voltage drop associated with the emitter-follower. Thus the load current is large and the effective source impedance

Fig. 5 Elements of the output circuit.

Fig. 4 Dimensions of transistor mountings.

Fig. 6 Circuit of the complete output bridge.
is low. In the actual amplifier the transistors $T r_{4}$ and $T r_{5}$ are replaced by Darlington-pairs mounted in TO3 cases. This raises the sensitivity so that the booster operates directly from low power driver and output stages built into a printed circuit. When two output and booster stages are connected together to form a pair of bridge arms, the biasing of the emitter-follower bases requires the provision of a constant-voltage circuit capable of being preset to give an output between 1.2 and 1.5 volts. This biasing circuit is used to adjust the standing current passing through the power transistors which form the bridge arms. (See Fig. 5.) The complete output bridge is shown in Fig. 6.

The driving stages

The transistors driving the emitterfollowers must be operated with their emitters joined to one of the supply busbars or it will not be possible to provide sufficient voltage swing to operate the bridge properly. (See Fig. 5.) This means that the driving stages are prone to drift and some means of correcting this tendency must be devised. The method used is the application of feedback in two separate forms: first, the mid point of the output is stabilized via (Fig. 6) $T r_{8}$ and resistor R_{f} which regulate the standing current passing through the input stages, and second, conventional voltage or parallel feedback is used. The feedback circuits are drawn in heavy lines in Fig. 6, which shows the basic arrangement of the power stages. The 470pF capacitors connected to the driving stages prevent high frequency instability and emitter resistors in the booster stages produce a certain amount of thermal stabilization. The 0.25Ω resistors have to carry large currents and they are constructed from short lengths of Eureka wire wound into helical coils.

Finally, in order to facilitate setting up, it is advisable to insert manganin shunts or removable links in the bridge arms at S for monitoring the standing currents. The amplifier now in use has small ammeters permanently connected to manganin shunts.

The preamplifier

The duties of the preamplifier are threefold. First, it is required to provide a voltage gain, and second, it should enable this gain to be varied. Finally it must convert the single-ended input to a balanced output. The first and third functions present no difficulties, but the second is a possible source of trouble as the d.c. passing through the gain control produces a voltage drop which alters with the setting and is considerably magnified in passing through the amplifier. Matched f.e.ts were tried out in the controlled stages but the degree of balance did not prove sufficient to prevent severe drift with changes of temperature. The final arrangement used a rheostat to partially short-circuit the output of a carefully balanced double-transistor amplifier stage. The mean voltage drop using this scheme is independent of the control setting. The circuit, with component values,

Fig. 7 Preamplifier circuit.
is shown in Fig. 7.
Setting up and testing: With water flowing through the output boosters and the $10 \mathrm{k} \Omega$ bias trimmers turned right back, the supply voltage should be turned on and the feedback resistor R_{f} adjusted until the mean output voltage is about 15 V for a 30 -volt supply. The gain control should then be turned to the short-circuited position and the $1 \mathrm{k} \Omega$ balance control on the preamplifier adjusted until the voltage between the output terminals shows zero on a d.c. voltmeter. When the gain is turned to a maximum this voltage will usually change and it should be returned to zero by means of the 470Ω balance control. The bias controls should then be carefully turned clockwise until currents of 1 to 2 A flow in each of the pairs of bridge arms. After allowing the stage to warm up the trimmers should be rechecked. Exhaustive testing has not been carried out because the amplifier has been in continual use for well over a year, but a few test results are given as an indication of the performance.

Max. open circuit voltage swing when using a 32 V d.c. supply: 58 V (20.5V r.m.s.)

Max. output current swing (limited by the power unit): 34 A (12 A r.m.s.) Max. power: greater than 230 W Output impedance: less than 0.5Ω
Frequency range: approximately $0-110 \mathrm{kHz}$
For general use it is advisable to install some means of protection. Possibly a flowoperated switch and thermocouples on the transistor mounting blocks should be considered.

Finally, it should be recorded that the amplifier in its present form does not heat up very much. This suggests that it might
be possible to uprate the design by a substantial margin; the simplest method would appear to be to raise the supply voltage and adjust some of the circuit component values accordingly.

Sixty Years Ago

It always seems a pity when legendary phenomena are explained in terms of modern scientific theories, and many people would ascribe this iconoclastic trend to the last 30 or 40 years. But it seems that we were at it long before that, as witness this extract from the December, 1914 issue of The Wireless World, in which W. B. Cole implies that Joshua was a bringer of "bad vibes".
". . . it seems quite clear to the writer that Moses, who was learned in all the wisdom of the Egyptians, imparted to his successor Joshua the knowledge of the principle of resonance, and that Joshua, discovering that the wall of Jericho responded to a certain note, made use of this principle.
"During the week he kept his men busy walking round the city in order to keep the inhabitants within (verse 1). The Israelites were strictly enjoined to maintain silence, so that the priests who blew with the trumpets might make the necessary acoustical experiments, and to tune all their trumpets to the same pitch. The seventh day all was ready. The people completely encircled the city and at a given signal the priests blew with their trumpets, the people shouted, the same note, and the effect of this choir of 40,000 men (Josh. iv, 13) caused the wall to collapse."

Measurement and detection with current differencing amplifiers

Introducing a set of tested circuits presented in cookery-card form

by J. Carruthers, J. H. Evans, J. Kinsler and P. Williams
Paisley College of Technology

Abstract

Three sets of Circards deal with a new kind of i.c. building brick-the LM3900 current differencing amplifier. Sets 16 and 17 cover signal processing and generation circuits respectively, and set 18 on measurement and detection will be issued shortly.

Pattern recognition is one sign that a technology is reaching maturity. The early stages following new advances are a succession of bright ideas, half-worked-out theories and unrelated developments. This is inevitable as workers in many areas take from the original material that which meets their needs-or appeals to their prejudices.

In circuit design the same configuratious appear under many guises and names, developed quite independently and for different applications. If we cau recognize these similarities and construct the appropriate family tree this is worthwhile in itself.

But we can do more. If two circuits are similar in form because related in function, then by finding any other circuit designed for one of the functions there is a good chance that it can be modified to provide the other. A good designer is one who picks the best brains.*

The present topic is a particularly good illustratiou of this thesis. The problem is to measure some property of the amplitude of an a.c. waveform. Four circuits have their properties listed in the table and circuit diagrams representing a basic feedback form of each are shown in Figs 1 to 4. The configurations are identical, the differences lying only in whether conduction is through a diode or a switch, and whether the load is resistive or capacitive. This identity of form is far from apparent iu practical versions since there are so many additional components and sub-circuits to optimize the response or effect coupling between other circuits/transducers.
The half-wave rectifier uses a diode as does the peak rectifier. It begins conduction through the diode as soon as the input goes positive remaining in conduction for the phase angle range 0 to π for sine-wave input. The mean value of the output is normally required, and a moving-coil meter is suitable as the deflection is proportional to the mean current.

[^9]When the resistive load is replaced by a capacitor, conduction of the diode only takes place for those instants when the input voltage exceeds the voltage stored on the capacitor. For a steady-state a.c. signal this corresponds to the positive peak of the input, and assuming no discharge of the capacitor in the intervening period the conduction angle is vanishingly small and is centred on $\pi / 2$. The resulting constant voltage across the capacitor is measurable with any d.c. voltmeter whose input current requirements are so small as to avoid significant capacitor discharge.

To accommodate varying signal amplitudes some discharge must be permitted since a small amplitude would otherwise never be sensed if following a larger input. The resistive path leads to a compromise time constant between maximum holding time of the peak voltage and minimum recovery time after large peaks. Conversely, the half-wave rectifier suffers from capacitive effects at high frequency with stray capacitance leading to partial peak rectification. The resulting output/frequency characteristic often shows a rise of 1 to 3 dB prior to the cut-off frequency limits of the amplifier.

The sampling circuit replaces the diode of the half-wave rectifier by a switch which closes for a brief interval at some phase angle determined by external circuits. The output is zero for all instants except the sampling instant. With capacitive loading, provided the switch closure is for a period of time greater than the time constant of the capacitance together with the amplifier output resistance, theu the capacitor volt-

Four types of circuit, listed here, to measure the amplitude of an a.c. wave-form-see Figs. 1 to 4.

Circuit	Load	Conduction angles, ϕ_{1}, ϕ_{2}	Conduction device	Voltmeter		
Sample	R	arbitrary $\Delta \phi \rightarrow 0$	switch	instantaneous		
	Half-wave	R	$0, \pi$	diode		mean/d.c.
:---:						
rectifier	moving coil					

Fig. 5. LM3900 c.d.a. is well-suited to measurement of time period and frequency. An input capacitor can alternatively be charged through a diode to form a "pump" circuit (see card 10).

Fig. 6. Defining operating conditions for testing a zener diode with a c.d.a. (see card 5).
age becomes equal to the input voltage (again a compromise since the sampling period should not be so long as to allow a significant change in the input). If the switch is closed periodically at the same instant in successive cycles then the sampling time may be reduced, with the capacitor voltage increasing to the required level over a number of periods. With the switch open, as it is for most of the time, the capacitor stores or holds the sampled voltage, provided the measuring instrument is suitably buffered.

The sampling circuits are readily constructed with current-differencing ampli-
fiers, and long hold times are possible. With careful adjustment the output drift can be $<5 \% /$ hour under controlled conditions which is a good performance from such a general-purpose circuit. The accuracy is less impressive since the currentmirror match is involved, and it cannot compete with standard op-amp circuits iu this respect.

Measuring period and frequency

The measurement of time period and frequeucy is another field to which the circuit is well-suited. A pulse waveform of constant width and height but variable frequency is fed as in Fig. 5 to the amplifier with parallel RC feedback. The mean voltage across the capacitor is then directly proportional to the input frequency. Alternatively frequency and pulse height may be kept constant when the output becomes a measure of pulse width. The availability of two inputs extends this capability to the measurement of frequency difference or sum. Alternatively an input capacitor may be charged and discharged through a diode network to give the equivalent of a diode pump/transistor pump type of frequency meter (tachometer).

The d.c. characteristics of the amplifier can be used to simultaneously define the operating conditions of diodes, zeners etc, while providing a low outputimpedance point for ease of measurement (Fig. 6). Finally, the circuit may be used in conjunction with an external network of resistors and diodes to perform quite complex logic functions such as exclusive-OR. Though offering no competition for the usual logic families for large-scale applications, they are very convenient for providing a small number of logic functions in an existing system. The wide range of supply voltages particularly commend them for such applications.

Examples of the redesigned circards, taken from a recent set.

Titles of cards in set 18 of Circards are

1 Measurement and detection
2 Logic circuits
3 Phase-locked loop
4 Transducer driving
5 Semiconductor device testing
6 Negative resistance circuits
7 Peak/mean rectifiers
8 Sample and hold circuits
9 High-frequency circuits
10 Tachometers

What are Circards?

Circards are a new method of collating and presenting data about circuits in a compact and easily retrievable way. The sets of $203 \times$ $127 \mathrm{~mm}(8 \times 5 \mathrm{in})$ double-sided cards are designed for easy filing in standard boxes and for easy access at the desk or at the bench, where transparent plastics wallets keep the cards in good condition.

Each card normally describes operation of a selected circuit, gives measured performance data and graphs, component values and ranges, circuit limitations and modifications to alter performance. Suggestions for further reading are included together with cross references to related circuits. The Circard concept was ontlined more fully in the October 1972 issue of Wireless World, pp. 469/70.

How to get Circards

Order a subscription by sending $£ 13.50$ for a series of ten sets to

Circards
IPC Electrical-Electronic Press Ltd
General Sales Department, Room 11
Dorset House
Stamford Street
London SE1 9LU
Specify which set your order should start with, if not the current one. One set costs $£ 1.50$, postage included (all countries). Make cheques payable to IPC Business Press Ltd.
Circuits covered so far in Circards are 1 active filters
2 switching circuits (comparator and Schmitt circuits)
3 waveform generators
4 a.c. measnrement
5 audio circuits (equalizers, tone controls, filters)
6 constant-current circuits
7 power amplifiers (classes A, B, C and D)
8 astable multivibrator circuits
9 optoelectronics: devices and uses
10 micropower circuits
11 basic logic gates
12 wideband amplifiers
13 alarm circuits
14 digital circuits
15 pulse modulators
16 current-differencing amplifiers-sigual processing
17 c.d.as-signal generation
18 c. d.as-measurement and detection
Future sets will cover monostable circuits, two-transistor circuits, multipliers and dividers, code converters, d.c. amplifiers and choppers, amplitude modulation and detection, transistor arrays, a.f. oscillators and voltage-to-frequency converters.

Capacitors

A survey of present day capacitor technology and applications

by R. A. Fairs
Rank Radio International

Abstract

This is a survey of the properties and parameters involved in the construction and use of capacitors and dielectrics. Simple equivalent circuit analysis is also explained. The second half of the survey deals with different types of capacitors: electrolytics, paper, plastic film, mica and ceramic. The construction of each type is described together with particular properties of each type and their circuit application. Finally an applications chart relates the different properties and parameters.

Progress in semiconductor technology has led to an increasing dependence on the role of commercially available capacitors in a circuit. A glance at any electrical network reveals that about 30% of the components used are capacitors; and that about 40% of all failures encountered are due to misuse in circuit application of these capacitors.

The impedance of a capacitor, Z, largely controls its behaviour in any circuit application. The manner in which this impedance deviates from that of a true capacitor requires the construction of an equivalent circuit for practical capacitors. This can be done quite simply and Fig. 1 shows the familiar parallel plate capacitor together with its equivalent circuit.

We can reduce this circuit to a simple resonant circuit (Fig. 2) whose impedance curve (impedance vs frequency) when plotted on log-log. graph paper is a hyperbola whose shape and orientation depends on the values of L_{s}, R_{s}, and C (Fig. 3).
We can make the following observations:

- f small $Z \approx 1 / 2 \pi f C \approx X_{c}$
- \int resonant $Z \approx R_{s}(20 \mathrm{kHz} \rightarrow 1 \mathrm{MHz})$
- f large $Z \approx 2 \pi f L_{s} \approx X_{L s}$

The resonant frequency of capacitors varies considerably from about 20 kHz for electrolytic capacitors to around 1 MHz for plastic film types and is even higher for ceramics. Fig. 4 shows the impedance curve of a tantalum electrolytic capacitor. The prime cause of the curve deviating from a hyperbola is temperature differences which affect the parameters of a capacitor in a non-linear fashion, so in some applications manufacturer's data must be consulted.

The inductance of the capacitor is largely controlled by the dimensions of the external leads and the method of connection to the capacitor section. In tubular capacitors the ratio of the length of the capacitor section to its diameter is also significant. To minimize the effect of inductance, most electrolytic capacitors have low inductance windings. Fig. 5. shows a reduction in inductance by a factor of 26 by this method.

As a rule of thumb the inductance of a

Fig. 1. Equivalent circuit of a typical capacitor: L_{s}-equivalent series inductance, R_{s}-equivalent series resistance, R_{p}-leakage resistance (or parallel loss resistance), C-apparent capacitance.

Fig. 2. Simple series resonant circuit where $Z=\sqrt{R_{s}^{2}+\left(X_{L s}-X_{c}\right)^{2}}$

Fig. 3. Impedance versus frequency curve of the simple resonant circuit shown in Fig. 2.

Fig. 4. Impedance curve for a tantalum electrolytic capacitor.
normal capacitor, length 1 cm , is of the same order as a piece of 22 swg wire of length 1 cm .

For capacitance value a temperature coefficient (t.c.) is defined by:

$$
\text { t.c. }=\frac{\Delta C \times 10^{6}}{C . \Delta t}
$$

$$
\begin{gathered}
=\frac{\text { change in capacitance } \times 10^{6}}{\text { orig. capacitance } \times \text { change in temp. }} \\
=\alpha \mathrm{ppm} /{ }^{\circ} \mathrm{C}
\end{gathered}
$$

where $\mathrm{ppm}=$ parts per million. By defining the temperature coefficient in this manner it is independent of the units of capacitance.

It is usual to operate capacitors well below their resonant frequency, and thus neglect the effects of inductance. Fig. 2 simplifies to an equivalent circuit which is universally used, that of a "lossy" capacitor in Fig. 6.

By considering this circuit one can develop terms which are extensively used throughout the capacitor industry. From

Fig. 5. Impedance reduction obtained by low inductance winding.

Fig. 6. Equivalent circuit of a "lossy" capacitor operated well below the resonant frequency.

Waycom have complete capacitor capability

Dielectric/Electrode	Capacitance mfd	Voltage D.C.	Encapsulation	Leads	Type Reference
Polycarbonate Metallized	0.01-10mfd	$63-400 \mathrm{~V}$ d.c.	Cylindrical metal case	Axial	Wima MKB3
Polycarbonate Metallized	$1-60 \mathrm{mfd}$	63-400V d.c.	Rectangular metal case	Tags	Wima MKB4
Polycarbonate Metallized	0.01-10mfd	63 \& 100 V d.c.	Flat oval metal case	Axial	Wima MKB5
Polycarbonate Metallized	0.022-6.8mfd	160-400V d.c.	Plastic case	Radial	Wima MKC4
Polycarbonate \& Metallized Film	0,01-3.3mfd	250-1000V d.c.	Plastic case	Radial	Wima MKC10
Polycarbonate Film \& Foil	$100 \mathrm{pF}-0.47 \mathrm{mfd}$	160 \& 400 V d.c.	Epoxy, compression mould	Radial	Wima FKC
Polycarbonate Film \& Foil	$100 \mathrm{pF}-0.1 \mathrm{mfd}$	160-1000V d.c.	Epoxy, cast mould	Radial	Wima FKC3
Polyester Metallized	0.01-22mfd	$63-400 \mathrm{~V}$ d.c.	Sleeve with epoxy resin seal	Axial	Wima Tropyfol M
Polyester Metallized	0.01-10mfd	$63-1000 \mathrm{~V}$ d.c.	Epoxy, compression mould	Radial	Wima MKS
Polyester Metallized	0.01-1mfd	100 \& 250V d.c.	Epoxy, cast mould	Radial	Wima MKS3
Polyester Metallized	0.1-22mfd	63-250V d.c.	Plastic case	Radial	Wima MKS4
Polyester Metallized	$3-40 \mathrm{mfd}$	100 \& 250 mfd	Rectangular metal case .	Tags	Wima MKB1
Polyester Film \& Foil	$47 \mathrm{pF}-0.1 \mathrm{mfd}$	$100-400 \mathrm{~V}$ d.c.	Epoxy, cast mould	Axial	Wima Tropyfol F
Polyester Film \& Foil	$1000 \mathrm{pF}-0.068 \mathrm{mfd}$	100-400V d.c.	Epoxy, compression mould	Radial	Wima FKS
Polyester Film \& Foil	1000pF-0.047mfd	100 V d.c.	Epoxy, cast mould	Radial	Wima FKS2 min
Polyester Film \& Foil	1000pF-0.1mfd	160 \& 400V d.c.	Epoxy, cast mould	Radial	Wima FKS3
Paper \& Foil	470pF-0.22mfd	400-1250V d.c.	Epoxy, cast mould	Axial	Wima Durolit
Polypropylene Film \& Metallized Foil	0.01-1.0mfd	250-1000V d.c.	Plastic case	Radial	Wima MKP10
Choice of Dielectric	Up to 100 mfd up to Custom Design	$00 \mathrm{~V} \text { d.c. }$	Optional	Optional	T Series
Polystyrene Film \& Foil	20pF-0.6mfd	25-1000V d.c.	Plastic case or dipped	Axial	602/603/617
Polystyrene Film \& Foil	$22 \mathrm{pF}-0.1 \mathrm{mfd}$	15-1000V d.c.	Unencapsulated	Axial \& Radial	611/616/619
Ceramic	$1.8 \mathrm{pF}-6.8 \mathrm{mfd}$	25-200V d.c.	Dipped Coat	Radial	Sky Cap
Ceramic	$10 \mathrm{pF}-1.0 \mathrm{mfd}$	50-200V d.c.	Moulded case	Radial	CKO5 \& CKO6
Aluminium Electrolytic	22-10000mfd	6.3-63V d.c.	Cylindrical metal case	Axial	Wima Print 1
Solid Tantalum Subminiature	.001-47mfd	$2-50 \mathrm{~V}$ d.c.	Epoxy	Axial \& Radial	Micro 1 Series
Solid Tantalum Metal Case	.0047-33mfd	6-100V d.c.	Cylindrical metal case, glass-to-metal seal	Axial	S Series
Solid Tantalum Metal Case	.0047-33mfd	$6-100 \mathrm{~V}$ d.c.	Cylindrical metal case, glass-to-metal seal	Axial	Mil-C-39003
Solid Tantalum, Miniature Metal Case	.0047-330mfd	2-50V d.c.	Cylindrical metal case, epoxy end seal	Axial	C Series
Solid Tantalum, Non-Polar	.05-160mfd	6-100V d.c.	Cylindrical metal case, glass-to-metal seal	Axial	N/S Series
Solid Tantalum, Feed Through	$3.5-60 \mathrm{mfd}$	$6-75 \mathrm{~V}$ d.c.	Cylindrical metal case, glass-to-metal seal	Co-axial	Feed-Thru
Wet Tantalum Metal Case	$1.7-560 \mathrm{mfd}$	6-125V d.c.	Cylindrical metal case, glass-to-metal seal	Axial	W1 Series
Wet Tantalum Metal Case	70-2400mfd	15-150V d.c.	Rectangular metal case, glass-to-metal seal	Tags	W2 Series
Foil Tantalum, Polar \& Non-Polar Plain Foil	0.1-400mfd	3-450V d.c.	Cylindrical metal case, elastomer or glass-to-metal end seal	Axial	$\begin{aligned} & \text { C30, C31, C32, } \\ & \text { \& C33 Series } \end{aligned}$
Foil Tantalum, Polar \& Non-Polar Etched \& High Etched Foil	0.25-1300mfd	15-150V d.c.	Cylindrical metal case, glass-to-metal seal	Axial	$\begin{aligned} & \text { C20, C21, c22, C23, } \\ & \text { C70, C71, C72 \& C73 } \\ & \hline \end{aligned}$
Foil Tantalum, Polar \& Non-Polar Custom Design	Up to 1 Farad	3-300V d.c.	Rectangular metal case glass-to-metal seal	Tags	Custom Design Series
Foil Tantalum, Polar \& Non-Polar Plain \& Etched Foil	$3-3500 \mathrm{mfd}$	15-150V d.c.	Rectangular metal case, elastomer or glass-to-metal end seal	Tags	$\begin{aligned} & \text { C51, c52, c53 } \\ & \text { \& C54 Series } \end{aligned}$

Write or 'phone for full details:

the phasor diagram, Fig. 7, we make the basic definitions:

Loss angle, δ
Phase angle, ϕ
Impedance, $Z=\sqrt{X_{c}{ }^{2}+R_{s}{ }^{2}}$
Power factor $($ p.f. $)=\frac{\text { true power }}{\text { apparent power }}$

$$
=\frac{P_{s}}{Z}=\cos \phi=\sin \delta
$$

Dissipation factor $(\mathrm{d} . \mathrm{f})=.\frac{\text { resistance }}{\text { reactance }}$

$$
=\frac{\boldsymbol{R}_{s}}{\boldsymbol{X}_{c}}=\tan \delta
$$

For small R_{s}, d.f. \approx p.f. (since $\sin \delta \approx \tan \delta$ for $\delta<0-15$)

This relation holds for almost all commercially available capacitors.

It is easily seen that for a good capacitor, δ must be small, but exactly what variations occur with frequency and capacitance value will be important in capacitor application and requires some dielectric theory explained in the appendix.

Leakage current

This quantity is dependent on the parallel loss resistivity $\left(R_{p}\right)$ of the capacitor, which has a negligible effect on the equivalent series resistance, R_{s}, except for low frequencies. It can be shown that

$$
R_{p}=\frac{1}{\omega C R_{s}}+R_{s}
$$

The relationship can be understood by considering a perfect capacitor discharging through a resistor as shown in Fig. 10. The behaviour of the circuit is described by:

$$
\begin{align*}
& \frac{Q}{C}+\frac{\mathrm{d} Q}{\mathrm{~d} t} R_{D}=0 \\
& \text { i.e, } \frac{\mathrm{d} Q}{Q}=\frac{-\mathrm{d} t}{R C} \\
& \left(\log _{\mathrm{o}} Q\right)_{0}^{\mathrm{t}}
\end{align*}=(-t / R C)_{\mathrm{D}}^{\mathrm{D}} \mathrm{c}
$$

Eqn. (1) shows that the leakage current varies with time, and thus a fixed value of the current, I, is only realized after a fixed time. For electrolytic capacitors this time is usually 15 minutes.

The quantity $R C$ is known as the time constant of the capacitor and is of the order of days for polystyrene capacitors, and several seconds for electrolytics.

Dielectric absorption

The rate at which a capacitor charges is important. A perfect capacitor when con-
nected to a d.c. supply of E volts would charge according to

$$
\begin{equation*}
I=(E / R) \mathrm{e}^{-t / R C} \tag{3}
\end{equation*}
$$

In practice, deviation from (3) occurs because if a fully charged capacitor is discharged and allowed to remain open circuit for some time a new charge accumulates within the capacitor showing that a fraction of the original charge has been "absorbed" by the dielectric. A time log therefore exists between the rate of charging and of discharging the capacitor.

Dielectric strength

The voltage at which the dielectric breaks down is a measure of the dielectric strength of the medium. This depends on the test conditions and the thickness of the material. It thus imposes a stress on the medium and is usually measured in volts/ metre. Of associated importance is the insulation resistance which will follow approximately eqn (4)

$$
\begin{equation*}
R_{T}=\frac{R_{S}}{\mathrm{e} K(T-t)} \tag{4}
\end{equation*}
$$

where R_{T} =insulation resistance at temperature T and $R_{t}=$ insulation resistance at temperature $t . K$ is a constant (0.1 for paper capacitors and 0.05 for mica and ceramic capacitors).

Energy losses

For a perfect capacitor, C, operating at V volts, the energy stored is given by eqns (5) and (6).

$$
\begin{gather*}
E=\int_{0}^{V} v \mathrm{~d} Q \tag{5}\\
=\int_{\mathrm{o}}^{V} v \mathrm{~d}(C \cdot v)=C \int_{\mathrm{o}}^{V} v \mathrm{~d} v=1 / 2 C v^{2} \tag{6}
\end{gather*}
$$

However, the phase difference between the vectors E and D defined in the appendix causes a hysteresis loop (similar to the B, H curves observed for ferromagnetic materials), between the charge Q, and applied voltage V. The energy dissipated per cycle of the loop will be given by eqn (5) and will vary with the frequency of the applied field, so that the total energy stored in the capacitor will be less than the result predicted by eqn (6).

General considerations

For a parallel plate capacitor working in vacuo, the capacitance, C, between the plates, ignoring edge effects, is given by

$$
\begin{equation*}
C=\epsilon_{e} A / d \tag{7}
\end{equation*}
$$

where ϵ_{o} is the permittivity of free space, \boldsymbol{A} is the area of plates, d is the distance between plates.

When a dielectric is placed between the plates the capacitance of the system changes to C^{I} where C^{t} is related to C by

$$
\epsilon=\frac{C^{l}}{C}=\begin{gather*}
\text { permittivity of dielectric } \tag{8}\\
\text { or dielectric constant }
\end{gather*}
$$

From these equations we see that to obtain the highest capacitance in the smallest volume, ϵ must be high, and d must be small. Translated into manufacturing techniques this requires a thin foil of high permittivity capable of withstanding the stresses imposed by the working conditions of the capacitor.

Fig. 7. Phasor diagram related to the equivalent circuit of a "lossy" capacitor.

Fig. 8. Loss ongle versus frequency for a polar dielectric material.

One has already seen that the cost of obtaining a high permittivity, illustrated by Fig. 8, is its frequency dependence.

The most important considerations in choosing a capacitor for particular applications are: capacity/physical size, and shape; working voltage; frequency characteristics (effect of frequency in impedance and dissipation factor); insulation resistance; environmental conditions (temperature and humidity considerations) and cost.

A brief survey of the types of capacitors available now follows.

Electrolytic capacitors

Capacitors of this type are physically the largest available; their CV product (capacitance value X working voltage) is also large. Typical application of these capacitors is to be seen in power supply circuits and coupling between audio amplifier stages.

The large capacitance evolves from the use of a very thin dielectric film (about 1 nm thick). Such a film is realized practically by oxidizing a suitable metal (usually aluminium or tantalum). The method employed is that of anodic oxidation, i.e. by making the metal the anode when immersed in an electrolytic bath.

The resulting dielectric film is extremely strong possessing a dielectric strength of the order of $10^{5} \mathrm{Vm}^{-1}$, although imperfections in this film lead to leakage being a typical characteristic.
For aluminium electrolytic capacitors, the oxide is produced on a 99.99% pure aluminium foil at an oxide thickness proportional to the working voltage of the capacitor. This voltage is often called the polarising voltage and its function is to
maintain the oxide film at a specified thickness, thus giving consistent capacitance value.

The foil, now known as the anode foil, is then concentrically wound with another aluminium foil (about 98% pure) which acts as a cathode. The two foils are separated by a layer of highly porous paper and the whole assembly immersed in an electrolyte (usually ethylene glycol) which promotes the forming of oxide film when the capacitor is in operation.

The capacitance section is then placed in an aluminium can which is hermetically sealed. A typical arrangement is shown in Fig. 11.

To give an increased capacitance value in the same physical size the aluminium oxide may be etched. This process effectively increases the area of the dielectric and increases its permittivity from about 7 to about 10 . However, electrolytics made in this manner are unable to withstand high currents, compared with the plain foil type.
Tantalum capacitors. These capacitors employ tantalum oxide as a dielectric which has a higher permittivity than aluminium oxide (typically up to 25), and as a result give a high capacitance in a relatively small size.

There are three distinct types of tantalum capacitors available: solid tantalum, wet sintered tantalum and tantalum foil (the construction of this is similar to that of an aluminium foil and will not be discussed).

The electrolyte used is solid manganese dioxide used in solid tantalum types or aqueous phosphoric or sulphuric acid used in the latter two types.
Solid tantalum capacitors. Capacitors of this variety are constructed by sintering tantalum powder particles around a tantalum anode, the resulting assembly is rigid after manufacture and is known as a "slug" (Fig. 12).

By controlling the temperature and time of the sintering process one may control the size of the slug, its density and its oxide content. The purity of the tantalum used is also important since it largely controls parameters such as leakage current and power factor.

The cathode of the solid tantalum capacitor is formed by dipping the slug in a solution of manganese nitrate which when passed through ovens at $300^{\circ} \mathrm{C}$ decomposes to a semiconductor layer of manganese dioxide, this is then coated with graphite and silver.

A schematic diagram of a complete solid tantalum-capacitor is shown in Fig. 13.

The final encapsulation of the solid tantalum capacitor can be in several forms, the most commou ones being: polyester sleeve with epoxy end seals, dipped epoxy coated, metal case with resin seal or epoxy resin moulding.
Wet sintered tantalum. The slug used is similar to that employed in the solid tantalum variety; the distinct difference between the two types being in the cathode system. Fig. 14 shows these differences.

Table 1. Comparison of tantalum capacitor types

Parameter	Solid	Wet	Fail
Maximum d.c. voltage rating	100 V	125 V	450 V
CV product	inflexible	inflexible	flexible
Closest capacitor tolerance	$\pm 5 \%$	$\pm 5 \%$	$\pm 10 \%$
Volume efficiency*	2	1	3
D.C. leakage current per $C V\left(\mathrm{AF}^{-1} \mathrm{~V}^{-1}\right)$	0.02	0.0005	0.01
Temperature stability**	1	2	3
Frequency characteristics**	1	2	2
Reverse voltage	$\ngtr 1 \mathrm{~V}$	0	$\neq 3 \mathrm{~V}$
Cost*	3	2	1

* ** 1 indicates highest* or best**

2 indicates intermediate stage between 1 \& 3
3 indicates lowest* or worst**

Table 1 provides a general comparison for the three types of tantalum capacitors discussed, however for more precise information it is necessary to consult manufacturer's data.

Reliability. (a) solid tantalum: very reliable, working failures generally due to misuse; intrinsic failure due to oxide crystallisation, (b) wet sintered tantalum: failure due to vapour transmission of the electrolyte through the capacitor seal, causing a fall in capacitance and degradation in the dissipation factor; hence hermetic seals are desirable. Aluminium and tantalum foil types also suffer from the same defect.

Paper capacitors

In this type of capacitor a thin sheet of

Fig. 9. Loss angle versus frequency for a non-polar dielectric material.

Fig. 10. Perfect capacitor before discharge through a resistor.

Fig. 12. Solid tantalum capacitor slug formed by sintering tantalum powder particles around a tantalum anode.

Fig. 13. Schematic of a complete solid tantalum capacitor (a) tantalum impregnated with manganese dioxide (b) graphite layer (c) resin auter coating (d) tantalum shown cut away to indicate anode terminal and tantalum pentoxide layer (e) solder layer completely surrounding cylinder (f) welded anode connection (g) cathode connection.

Fig. 11. Construction of an aluminium electralytic capacitor.

ARE YOU AWARE...?

that

SPRAGUE

manufacture the following components

SPRAGUE

- a great name

 to remember!
SPRAGUE ELECTRIC (UK) LTD

 SPRAGUE hOUSE, 159, HIGH STREET, YIEWSLEY, WEST DRAYTON, MIDDX. UB7 7RY
CAPACITORS

Aluminium
Tantalum
Wet and Solid
Ceramic
Paper, Oil and Film
A. C. Motor-start

Commutating
MAGNETICS
Pulse Transformers Luminescent

Delay Lines

RESISTORS

Wire Wound
SEMICONDUCTORS
I.C.'s

Linear circuits for audio applications
Hybrid
FILTERS

SPRAGUE
the mark of reliability

Ceramic Capacitors start here

Steatite and Porcelain Products Ltd. is one of Europe's leading industrial ceramics producers. One of the things for which we are famous is the manufacture of high-quality dielectric ceramics, 'Faradex' and 'Tempradex' for the production of Type I and Type II capacitors.

That's who we are. Now what about you?
If what you need are large production runs of conventional tube and disc capacitors then we'll be glad to recommend our customers to you - and they include the leading capacitor manufacturers in Britain and Europe. On the other hand, if your requirements are either specialised or comparatively small we might well be able to supply you direct. For example, we make high-quality EHT capacitors for colour TV multiplier units and similar applications.

Contact John Stubbs for further information.
But the service we can offer you doesn't stop there.

We also make a unique range of high voltage capacitors for electrical distribution switchgear use.

Production at Steatite and Porcelain is backed up by extensive and sophisticated laboratory facilities which are at your disposal. If you need test equipment capable of $2,000,000$ volts for example, get in touch.

Dave Marsham is your contact.
In fact if you have any requirement in the dielectric ceramic field you could save yourself time and trouble by talking to us first. Do it now.

M Morgan

Steatite and Porcelain Products Ltd

Bewdley Road, Stourport-on-Severn, DY13 8QR, Worcestershire. Telephone: Stourport 2271
Telex: 338015

A N T E X

(ELECTRONICS) LTD.

Mayflower House Plymouth, Devon
Telephone: 0752 67377/8. Telegrams: Antexlim Plymouth. Telex: 45296 Giro No: 2581000 . Bankers: Midland Bank Ltd., 92 Moorgate, London EC2

Our ref: EK

Your ref: $\mathrm{SA} / \mathrm{SAB}$

Date: 20.11.74

AN OPEN LETTER TO OUR EXISTING AND PROSPECTIVE CUSTOMERS

We very much regret that owing to the great demand for all our models of Low-Leakage Soldering Tools we have, at present, a delivery delay of up to 16 weeks.
We are naturally making every endeavour to diminish this delay and would emphasize that all orders are being dealt with in strict rotation.

Yours sincerely,

E. KLEIN

Directors: 'T. H. M. Offer,
P. M. Klein, E. Klein (Dutch),
J. W. Niemann (Dutch), S. Brewster

SEI capacitors put a smile on your face
 . . . and extend that smile with our new range of extended foil polystyrene types for those critical applications where only the best is acceptable.

SALFORD ELECTRICAL INSTRUMENTS LIMITED Peel Works, Barton Lane, Eccles, Manchester M30 OHL. Telephone 061-7895081 Telex 667711.

WW-0B3 FOR FURTHER DETAILS

ELECTRONIC POWER UNITS FOR XENON ARC AND MERCURY ARC LAMPS

UNITS AVAILABLE FOR LAMPS RANGING FROM 75 TO 6500 WATTS.

Lamp housings and lens systerns manufactured as standard off the shelf models or to specific design.
K. T. Manners Design Ltd.

33 Percy Street, London W1P 9FG
Telephone: 01-580 6361. Telex: 28604

LET'S TALK ABOUTCERAMICS!

You would be surprised at the range of ceramic capacitors and piece parts that we can show you.

Supported by the pick of the world's technology there is always

Ceramic Plate Capacitors $4 \mathrm{~mm} \mathrm{sq}-12 \mathrm{~mm} \mathrm{sq}$ $1 \mathrm{pf}-0.047 \mathrm{uf}$
Ceramic Disc Capacitors 4 mm dia- 16 mm dia 0.3 pf- 0.1 lf

Ceramic Disc Trimmer Capacitors
4.5 mm dia-25mm dia 2.5/4pf-20/150pf

Ceramic Tubular Trimmer Capacitors
$0.5 / 2 \mathrm{pf}-3 / 15 \mathrm{pf}$
Ceramic Leadless Disc and Trapezoidal Capacitors $0.4 \mathrm{pf}-1500 \mathrm{pf}$
Ceramic Feed-thru Capacitors and Insulators

Ceramic High Stability Inductors $16 \mathrm{nH}-14 \mathrm{uH}$ Ceramic High Frequency Components Ceramic Metallized Coils Ceramic Stand-off Insulators

All types of ceramic insulators and piece parts both standard and custom built.

Don't miss out. Why not call our man in to talk about the Stettner range?

STEATITE INSULATIONS LIMITED
Hagley House, Hagley Road, Birmingham B16 8QW. Telephone 021-454 696!, Telex 33445.
paper is impregnated with another suitable dielectric to prevent moisture absorption (see Table 2 for details of typical dielectrics used). The electrode of the capacitors is usually aluminium and two basic types of capacitor exist, one being the metal foil variety which functions at high voltages and currents, the other being the metallized variety where the dielectric is coated with a thm layer of alumininm or zinc; this method of construction leads to a size reduction due to the thinness of the metallized film but has a disadvantage in that pulse handling is bad.

Encapsulation of paper capacitors is usually by moulding the capacitor element in resin or encasing it in metal cans, the latter being hermetically sealed to prevent evaporation of the dielectric.

Reliability. The power factor of paper capacitors is dependent on the type of impregnant used. In some cases it may be large and will always increase rapidly with frequencies above 10 kHz .

A defect in the dielectric of a capacitor will cause an electric are between the electrodes which will destroy more of the surrounding dielectric and result in catastrophic failure.

The disadvantage is not seen in metallized film types because the heat generated by the arcing process will rapidly vaporize the electrode section, this clearing the short. Metallized film construction is thus not confined to paper capacitors but is used extensively in plastic film types. A schematic diagram of the process is shown in Fig. 15.

Plastic film capacitor

Plastic films are used extensively in capacitor manafacture due to their high reliability and low cost. A number of leaves of plastic film are interleaved with aluminium electrodes rolled into a coil and encapsulated by a metal case or plastic encapsulation. A typical plastic film capacitor is shown in Fig. 16.

Historically, the first plastic film capacitor consisted of polystyrene film, which produced a realiable capacitor, although expensive. Nowadays, numerous plastic films are used and Table 3 gives a synopsis of the relative advantage of the four most common types.

It shonld be noted that it is not possible to vacuum deposit a metallized film on polystyrene film due to its low melting point.

Mica capacitors

Mica is a natnrally occurring silicate which due to its platelike crystal structure, can be laminated into thin sheets suitable for capacitor construction. Being chemically inert and possessing a high permittivity (6.5 to 8.7) mica is capable of a precise electrical performance.

The construction of a mica capacitor is shown in Fig. 17, and consists of a number of small parallel capacitors to form the main capacitor.

Metallized film techniques in mica capacitors have led to the silver mica capacitor becoming extensively available in the capacitor market. In this capacitor, silver electrodes are fired directly onto the sheets of mica giving better stability due to the defined distauce of the electrodes and the lack of air pockets in the capacitor (and hence their associated instability).

Encapsulation of the capacitor is commonly by means of a moulded epoxy resin although this does produce a fatigue condition on the capacitor due to the heat of the moulding which affects the reliability of the capacitor. In contrast the dipped mica capacitor, being encapsulated by dipping in resinous material below atmospheric pressures gives better electrical characteristics than the moulded types and high reliability.

Ceramic capacitors

Ceramic capacitors may be divided into two classes; the high permittivity type (high $K, \varepsilon \approx 1000$) and low permittivity type (low $K, \epsilon \approx 10$).

Characteristics of the two types are widely different. The low K types possess low power factor, small linear temperature coefficients, and operating frequency capabilities of up to 1000 MHz . The high K types have high power factors (dependent on the applied a.c. and d.c. fields due to electrical hysteresis) and non-linear temperature coefficients. By a suitable choice of materials a dielectric can be useful in circuit applications where an otherwise detrimental temperature drift would occur, e.g. tuned circuits and

Table 2. Dielectrics for paper capacitors

*decreases with frequency for polar material

Fig. 14. Schematic of a wet-sintered tantalum capacitor (a) fine silver (b) anodized sintered tantalum anode (c) tantalum wire (d) solder seal (e) tantalum to nickel weld within header (f) nickel wire (g) solder seal between header and external anode lead (h) glass-to-metal seal (j) internal seal (k) electralyte (l) anode boot (m) cathode.

Fig. 15. Process of self healing of a metallized dielectric capacitor. The voltage trace is typical during the process.

Fig. 16. Constructional features of a plastic film capacitor.
\square mica
foill

Fig. 17. Construction of a mica capacitor and its equivalent circuit.

filters.
The high K ceramic capacitors are able to give a large capacitance in a small space and find application in decoupling and bypass capacitors.

Manufacture

The ceramic materials used in capacitor manufacture are made from natural minerals such as steatite, titanium dioxide, and alkaline earths. The ingredients, after being finely ground are compressed, heated to $900^{\circ} \mathrm{C}$ to remove any impurities; then reground and finally recast in a carefully controlled atmosphere of about $1300^{\circ} \mathrm{C}$.

Ceramic capacitors are found in either disc or tubular form. The electrodes are a film of silver fired on to both surfaces of the ceramic. Encapsulation is usually by means of a wax impregnated phenolic dip.

Of particular interest is the barrier layer ceramic capacitor. In this type the high K thin film ceramic plates are fired in a deoxidising oven so as to convert the plates into a conducting metal. The capacitor assembly is then fired in a reoxidizing oven so as to restore the external surfaces in the assembly to a dielectric. Normal silvering is now applied resulting in two high capacity capacitors connected in parallel.

This technique enables high capacitance to be obtained in a relatively small space.

Further reading and acknowledgement

Most manufacturers provide excellent information on capacitors, among those of particular interest are technical literature by: Waycom, Philips, Plessey, Lemco and Erie.
Of deeper and of a more theoretical nature are "Fixed Capacitors" by Dummer (Pitman) and "Dielectrics" by P. J. Harrop (Butterworths).

The author wishes to thank the staff of the Components Laboratory, Rank Radio International for their consistent help and enthusiasm.

Appendix

It is known that when a dielectric is polarized the electric field (E) within the dielectric is vectorially displaced according to eqn. 1 .

$$
\begin{equation*}
\epsilon_{o} E=D-P \tag{A1}
\end{equation*}
$$

where: $\epsilon_{0}=$ permittivity of free space
$D=$ dielectric displacement of the medium
$P=$ polarization of the medium
This equation can be physically interpreted by considering a dielectric as a collection of atoms, positively or negatively charged, each separated by a small
distance, and arranged in some regular pattern to form what is known as a lattice. The dielectric may be fundamentally classified as polar or non-polar according to whether or not it possesses a permanent dipole moment (a dipole consists of two charges equal in magnitude, q, but of opposite sign, separated by a small distance, a. The dipole moment is the quantity $q a$). Under the action of an electric field, E, the lattice of the dielectric is distorted (or displaced) and its dipole moment is altered in magnitude and direction. The dielectric is said to be polarised.

It is also useful to define the "polarizability" of the medium, X, from

$$
\begin{equation*}
P=X \epsilon_{o} E \tag{A2}
\end{equation*}
$$

hence from (A1) and (A2), $D=(1+X) E$.
This defines the permittivity of the dielectric, ϵ (see general considerations for the physical importance of this parameter) by $\epsilon=(1+X)$.

The loss angle, δ, is defined as the phase angle between E and D, but is complicated by the fact that X is not dependent on a single variable but on four physically distinct mechanisms viz: electronic polarizability (e), atomic polarizability (a), dipole polarizability (d), space charge (s)

$$
X=\alpha e+\beta a+\gamma d+\delta s
$$

where ($\alpha, \beta, \gamma, \delta$ are constants dependent on the dielectric).

Capacitor comparison chart

	Polyproprlene		Paphester				Mica	Pepeer		Polystyrene	Ceramic		Eloctrolytic		
	matallized	film/foil	metallized	film/foil	metallized	film/foil		metallized	film/foil		disc/tube	monolithic	foil	foil	solid \& wet
Insulation resistance 0	$10^{5} \mathrm{M}$	$5.10^{\circ} \mathrm{M}$	$5.10^{4} \mathrm{M}$	$10^{5} \mathrm{M}$	$5.10^{4} \mathrm{M}$	$10^{5} 48$	$10^{5} \mathrm{~m}$	$3.10{ }^{3} \mathrm{M}$	2.104 M	$10^{\text {E M }} \mathrm{M}$	$10^{3} \mathrm{M}$	$10^{4} \mathrm{M}$	practical measurement by laakage currem		
Dissipation factor	0.0003	0.0003	0.01	0.005	0.005	0.001	$\begin{aligned} & 0.02 \text { to } \\ & 0.0005 \end{aligned}$	0.01	0.005	0.0003	0.002 to	0.02	0.08	0.01	$\begin{aligned} & 0.0005 \\ & \text { to } 0.02 \end{aligned}$
Tolerance 4\%)	5	2	5	5	5	2	0.5	10	5	0.625	10	20	10	10	5
Temperature range ${ }^{\circ} \mathrm{C}$)	-40 to 85	-40 to 100	-55 to 125	- 55 to 125	-55 to 125	-55 to 125	-55 to 125	-30 t0 100	-3010100	-40 to 70	-55 to 125	-55 to 125	-20 to 80	-40t0125	-40 to 150
Size per CV	small	small	small	small	small		smail	small	large	large	small	small	very small	small	
Stability	fair	exceslent	fair	fair		fair	excellent		fair	oxcellent	fair	fair	fair	very good	excellent
Cost per CV	low	low	low	fair	fair	fair	fair	fair	fair	high	low	low	fair	high	high
Capacilance range ($\mu \mathrm{F}$ unless indicated)	$\begin{aligned} & 0.001 \\ & \text { to } 100 \end{aligned}$	$\begin{aligned} & 100 \mathrm{pF} \\ & \text { to } 0.47 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.001 \\ & \text { to } 10 \end{aligned}$	100pF to $0.01 \mu \mathrm{~F}$	$\begin{array}{\|l\|} \hline 0.001 \\ \text { to } 1000 \end{array}$	5 pF to $0.01 \mu \mathrm{~F}$	5 pF to $0.01 \mu \mathrm{~F}$	0.01 to 100	$\begin{aligned} & 0.001 \\ & \text { to } 100 \end{aligned}$	100 pF to $0.6 \mu \mathrm{~F}$	5 pF to $1 \mu \mathrm{~F}$	$\begin{aligned} & 0.001 \\ & \text { to } 10 \end{aligned}$	typically 1 to 22.000	$\begin{aligned} & 1 \text { to } \\ & 1000 \end{aligned}$	CV product inflexible 13500 max normally)
Voltage fach	250 to 440	63 to 500	63 to 400	90 to 160	40 to 250	83 to 160		250 to 630	250 to 630	-	63 to 250	-	-	-	-
(V) \|d.c.\}	750 to 1000	100 to 1500	100 to 1500	160 to 400	63 to 1000	10010400	63 to 630	500 to 5000	-	63 to 1000	63 to 10000	63 to 450	6.3 to 500	6.3 to 300	1 to 50
Temperature coefficient PPM ${ }^{\circ} \mathrm{C}$	-170	-120	400	400 ingar!	150	$\begin{aligned} & -50 \text { to } \\ & -100 \end{aligned}$	100	300	300	-150	non linear 1000	r positive to aneg	1500	1000 (mon linear)	200 to 1000
Appx. resonance MHz	0.1	1	0.1 *	1	0.1	1	1.0	0.1	0.1	1	10	100	0.05	0.1	0.1

The Moscow way of licensing

At a time when the h.f. bands are less frequently open to DX I find that a high percentage of all my contacts seem to be with amateurs in the USSR where activity and standards of operating are high and where many amateurs seem to be using home-built transceivers. Considerable official encouragement is given to amateur radio in the USSR including access to surplus equipment and technical information. But at the same time by British standards the licensing is very much on an "incentive" basis and demands considerable effort on the part of those wanting licences.

A recent survey of Russian licence conditions in Electronics Australia shows that the Muscovite's path to a first-class licence is long and arduous. In essence the procedure is: complete a basic electronics course; join a radio club and take a test (including a 10 w.p.m. Morse test) which licenses you to listen on the amateur bands and \log stations; after six months you can take a "third-class" test (more difficult examination on simple transmitter theory and practice and 12 w.p.m. Morse test). If you pass this you are permitted to operate a 10 -watt transmitter on sections of the 3.5 and 7 MHz bands c.w. and 28 MHz phone. These licences can be renewed only by the operator moving to a higher class. To do this requires another("second-class") examination and a pass allows operation of a 40 -watt transmitter on 3.5 to 420 MHz c.w. (phone restricted to 28 MHz). Finally to obtain a "first-class" licence requires the applicant to send and receive Morse at 18 w.p.m., be able to design transmitter and receiver circuits, and build and service advanced transmitters and receivers. If he or she (for some 10% of Russian amateurs are "YLs") passes, then permission is given to operate 200 watts on 3.5 to 420 MHz c.w. or phone (there are no 1.8,50 or 70 MHz bands available in Russia - I am not certain about microwave bands).

V.h.f. going factory-built

Not so long ago it was common practice for v.h.f. enthusiasts to claim that their bands had become the last refuge of those who liked to build their own equipment (although in practice reception usually depended on a home-built converter in
front of a commercially-built h.f. communications receiver), Bnt there is plenty of evidence to show that factory-built equipments are today becoming almost as widely used on 144 MHz as on 14 MHz . In the last two or three years there has been an influx of v.h.f. transceivers such as the Yaesu FT-2 series, Trio TR7200 and TR2200 and kit units such as the Heathkit HW202, 144MHz transverters, Inoeu and Icom units such as the IC22 and IC210 with its phase-locked v.f.o., the Liner 2 transceiver that has enormously increased the amount of s.s.b. on 144 MHz , and a growing number of 144 MHz handheld units for working direct or through repeaters.

One wonders whether, in the face of this invasion, the home-builders will tend to retreat to the u.h.f. bands or subscribe to the growing interest in microwaves.

Ionospheric storms in a quiet year

Recent months have been marked by pronounced 27 -day repeats of pretty severe magnetic storms. They start off with a steep rise in maximum usable frequencies, leading on to auroral effects and then followed by several days of disturbed conditions and low m.u.f., particularly on the North Atlantic paths. It has of course long been recognised that the 27 -day repetition period of these storms allows them to be predicted with good accuracy during the decreasing phase of the sunspot cycle. But one certainly has the feeling that the storms have been more severe this year than one would expect in what many regard as "a year of the quiet sun".

For example, October 12 saw a high m.u.f. with the 28 MHz band opening well to Australia and Japan; this was soon followed by Aurora openings on v.h.f. and then a lengthy period of subdued h.f. conditions.

Clamping down on Citizen's Band violations

The American FCC appears to be taking seriously a series of measures aimed at better regulation and supervision of 27 MHz CB operation where in the past the Class D regulations have been honoured mostly in the breach. For example the Commission has recently set up four specially equipped and trained enforcement teams; obtained a well-publicised series of criminal convictions for gross violations; established temporarily some 40 special inspection stations to check the use of CB equipment by lorry drivers (of 36,000 vehicles checked about 7,000 were carrying 27 MHz CB equipment, more than half unlicensed and many others exceeding the power regulations). There are current proposals in the United States to prohibit the sale or importation of linear amplifiers in the 20 to 40 MHz range as these are being widely used to run high-power CB stations.

However, there are also proposals to increase the number of 27 MHz channels (adding 27.23 to 27.54 MHz), to permit
the use of omnidirectional aerials at heights up to 60 ft (20ft will still be the limit for beams) and to relax some of the restrictions on hobby use of Citizen's Band.

Type approval of amateur gear?

One aspect of so much amateur equipment now coming from factories rather than being built on the kitchen table is the question of whether this is likely to lead to the introduction of some form of type approval, type acceptance or recognised "performance standards". Probably the main question is that of the levels of spurious emission outside of amateur bands, a factor that has been emphasised by the more general use of mixing processes rather than straight frequency multiplication in transmitter practice. It is by no means unusual, even in reputable designs, for there to be spuriae of the order of -40 dB or so with reference to wanted output. This may or may not result, for example, in interference to television reception or to other communication services; much depends on what additional suppression is provided by the operator in the form of filters or resonant aerials. But there is an argument that if equipment is sold for amateur operation should it not be expected to be suitable, without additional suppression, for use at all normal locations?

One answer might be for the licensing authorities to insist that all equipment conformed to a published performance specification, but where would this leave the amateur who wishes to modify equipment and lacks measuring equipment to ensure that the performance is still within spec?

The ARRL Board of Directors recently decided that if any form of type approval is instituted in the United States the League would urge continuation of the amateur's right to build, to modify and to adapt surplus equipment to his own use.

In brief

The installation of the RSGB president for 1975 (C. H. Parsons, GW8NP) will take place at Cardiff on January 17 . . Nobel prize winner Sir Martin Ryle holds the amateur callsign G3CY . . . The final RSGB 144 MHz contest for 1974 takes place on December 8 . . . Microwave operating awards are issued by the RSGB for the first contact an amateur makes over the following distances: $13-\mathrm{cm}$ band $500 \mathrm{~km} ; \quad 9-\mathrm{cm} \quad 400 \mathrm{~km} ; 6-\mathrm{cm} \quad 300 \mathrm{~km} ;$ $3-\mathrm{cm} 150 \mathrm{~km}$; and $15-\mathrm{mm} 150 \mathrm{~km}$. . "I would like to voice my personal firm support of the Amateur Radio Service," from a recent address by Richard E . Wiley, chairman of FCC . . Over 1,000 repeater stations have been licensed in the United States, making this the fastest growing segment of amateur radio, and it seems likely that restrictions on the linking of repeater stations may be lifted, together with those relating to cross-band operations.

PAT HAWKER, G3VA

New Products

Sweep/function generator

Line, square, triangle and swept waveforms, as well as fixed-amplitude pulses are available from the model 195 generator. A frequency range from 2 Hz to 200 KHz in three ranges, with a linear/logarithmic frequency control is offered by the instrument which will span three decades on any frequency range. Slow, medium and fast sweep rates are provided, with high- and low-level sine outputs, and a voltage-controlled frequency input permitting remote control of the frequency. The three sweep rates give sweep times of $25 \mathrm{~s}, 250 \mathrm{~ms}$ and 2.5 ms , and the frequency accuracy is claimed to be $\pm 2 \%$ of full scale. The instrument measures $18.7 \times 21.6 \times 7.3 \mathrm{~cm}$ and costs £79. Dana Electronics Ltd, Collingdon Street, Luton, Beds.
WW300 for further details.

Direct current calibrator

The 609 S is a d.c. source for calibration from nanoamp levels up to 100 mA in five ranges. An accuracy of $\pm 0.05 \%$ of setting $\pm 0.005 \%$ of range $\pm 0.2 \mathrm{nA}$ is quoted for the instrument, which has a regulation for the load and supply of $5 \mathrm{ppm} / \mathrm{V}$. Output noise for the 100,10 , and 1 mA ranges is less than 5 ppm of full scale, and 10 ppm of full scale $\pm 0.1 \mathrm{nA}$ for the 100 and $10 \mu \mathrm{~A}$ ranges. The unit, which measures $22 \times 16-\times 19 \mathrm{~cm}$, is powered by ten U2-type batteries, but an interchangeable mains power unit is available. Time Electronics Ltd, Botany Industrial Estate, Tonbridge, Kent.
WW302 for further details

Pulse transformer

The 1060 series of miniature pulse transformers manufactured by Nano Pulse Industries has been designed for use with triac and s.c.r. circuits. Standard types in the range have either two or three windings and ratios of $1: 1,1: 1: 1$ or $2: 1: 1$ respectively. Minimum inductances can be either 1.5 or 5 mH with maximum leakage inductances between 0.5 and $2.3 \mu \mathrm{H}$. Tekdata Ltd, Westport Lake, Canal Lane, Tunstall, Stoke-on-Trent, Staffs ST6 4PA. WW306 for further details

Cable identification system

A system comprising the model H803030TC pulse transmitter, and the model TCD-2 pulse detector is capable of identifying each phase anywhere along cable runs. A series of coded pulses are transmitted by the H8030-30TC on "A"

WW300

WW311
and "B" phases, these pulses combine and return on "C" phase. In threeconductor cables, each phase can be identified by moving a pick-up coil around the cable, and by observing the meter on the TCD-2 detector. Hipotronics Inc, Brewster, NY 10509, USA.
WW311 for further details

Multichannel VU meter

A new instrument called the VUE-SCAN replaces conventional VU meters and accepts up to 28 channels of audio information which are displayed simultaneously as illuminated vertical bars on a television monitor screen. The bars are always present as a background refereuce. The lower twothirds of the screen has a blue filter and the remaining upper third has a red filter. As the level of a channel increases the bar representing that channel increases in height and intensity. Any channel which moves into the red position is identified as overmodulated. Audio Designs \& Manufacturing Inc, 16005 Sturgeon, Roseville, Mich 48066, USA.
WW304 for further details

Digital clock

Emihus Microcomponents have designed a universal digital circuit specifically for use in mains driven electronic digital clocks, timers and time-base circuits. The circuit, which uses p.m.o.s. technology, has two designations-EDC6051 and EDC6052. Common features to both are: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or 100 kHz control frequeucy options; three inputs for setting minutes, tens-ofminutes and hours; stop control feature,

WW302

WW306
reset facility, 12 - or 24 -hour display, a.m./p.m. indication, and eight-decade counting in $1,2,4,8$, b.c.d. option. The EDC6051, however, includes a 24 -hour alarm setting and a "snooze alarm" feature. The circuit is contained in a 28 -pin d.i.l. package. Emihus Microcomponents Ltd, Clive House, 12 Queens Road, Weybridge, Surrey.
WW303 for further details

Rotary wire stripper

The model 70 wire stripper has been designed as a production line machine and is capable of handling most types of wire up to 0.201 in outside diameter. A solid carbide swing blade is adjusted to suit the wire thickness. The machine is mainspowered, measures $5 \frac{3}{4} \times 3 \frac{3}{4} \times 10$ in and weighs $7 \frac{1}{4} \mathrm{lb}$. A. Levermore \& Co Ltd, 40 The Broadway, London SW19 1SQ.
WW309 for further details

Milliohmeter

The Toneohm 400A is a mains-operated milliohmeter offering five ranges from 30 milliohm to 3 ohm. The readout is indicated on a panel meter, and in the form of a resistance dependent audio tone. Accuracy is quoted as 5% of f.s.d. and the maximum probe voltage is 0.7 V . Calibration is by means of a preset control on the front panel of the meter which measures $15.5 \times 10 \times 10 \mathrm{~cm}$ and weighs 1.1 kg . Polar Electronics, P.O. Box 97, Les Villets Forest, Guernsey, Channel Islands.
WW301 for further details

WW309

WW308

Radio power meter

A mobile r.f. power meter, TF2512, from Marconi is a 50 ohm direct reading absorption power meter having a 10 W and 30W full-scale range. Frequency range is from d.c. to 500 MHz , with an accuracy of $\pm 5 \%$ up to 250 MHz and $\pm 7 \%$ up to 500 MHz . A thermocouple sensing element provides true-mean-power measurements from any applied waveform. Changing the power range is achieved by altering the meter sensitivity, therefore it is impossible to damage the thermocouple by inadvertently switching to the wrong range. Marconi Instruments Ltd, St Albans, Herts.
WW310 for further details

Knobs

Sifam have introduced a range of knobs and accessories which are available in $11,15,21$ and 29 mm base-diameter sizes with or without indicating line. All the accessories are made from nylon except for transparent dials which are made from a polycarbonate. Black and grey shades are standard with green, blue or yellow caps and pointers. Sifam Ltd, Woodland Road, Torquay, Devon TQ2 7AY.
WW308 for further details

Pattern generator

A pocket-sized u.h.f/v.h.f. 625 line pattern generator has been announced by Labgear. The unit produces a blank raster, 12 horizontal/ 13 vertical lines, and an eight-bar grey scale. Both u.h.f. and v.h.f. outputs are available from the

WW310
generator which has a mains/battery facility. The instrument measures $4.5 \times 10 \times$ 17.5 cm and is available from Labgear Ltd, Abbey Walk, Cambridge CB1 2RQ. WW315 for further details

C-band amplifier

A solid-state amplifier for use in line-ofsight communication systems has been introduced by Raytheon. The model VCM-5004 delivers one watt minimum between 7725 and 8275 MHz . The design incorporates a power output monitor, selfcontained input-output circulators and current regulators. Noise figure rating for the device is 33 dB , gain 27 dB minimum, phase linearity $\pm 2 \% / 40 \mathrm{MHz}$, and amplitude linearity $\pm 0.2 \mathrm{~dB} / 40 \mathrm{MHz}$. The amplifier operates in a temperature range from 0 to $+55^{\circ} \mathrm{C}$ and measures 5.75×4.75 $\times 1.25 \mathrm{in}$. Raytheon Company, 130 Second Avenue, Waltham, Mass 02154, USA.

WW307 for further details

Electronic teleprinter

The ITT-Creed model 2300 is the first teleprinter to feature 1.s.i. circuits and first to feature a clutchless print mechanism. It offers a cost reduction of about 20% on the previous ITT machine, at the same time featuring an interchangeable keyboard and a link option board to cater for the different Telex systems. The machine is lighter, smalier and more reliable than its predecessors, as well as being cheaper.

Ability to work into any Telex system is achieved by a plug-in board system that includes a diode matrix board from which

WW315

selected diodes are clipped out for individual systems (as well as for identification codes). "On the fly" printing is used where a rotating wheel in front of the paper is struck from behind the paper-a technique previously applied to data printers. An impregnated porous wheel (Porlon) resting on the character wheel provides inking and is claimed to have a life six times that of a normal ribbon.

Operating speed can be 50,75 or 100 bauds and the 5 -unit (Telex code) electronics have the potential for conversion to an 8 -unit code for data terminals. ITT Creed Ltd, Hollingbury, Brighton BN1 8AL.
WW312 for further details

Graphic equalizer

A graphic equalizer called the Dual 11 s comprises two identical 11 band equalizers in one case. Each unit uses overlapping $L C R$ filters arranged for boosting and cutting each channel by up to 12 dB . The instrument features a noise figure of better than -90 dBm and total harmonic distortion of less than 0.01%. The equalizer is available as either a rack-mount unit or fitted in a portable case from Klark-Teknik Ltd, Summerfield, Kidderminster, Worcs DY11 7RE.
WW313 for further details

High voltage capacitors

Perdix Components are now offering a range of high-voltage capacitors for applications where a military grade is not required. Standard types are available from 2 kV d.c. working to 150 kV d.c. working and capacitances from 500 pF to $0.5 \mu \mathrm{~F}$ with a tolerance of $\pm 20 \%, \pm 10 \%$ or $\pm 5 \%$ in the operating temperature range -40 to $+80^{\circ} \mathrm{C}$. Perdix Components Ltd, Perdix House, 31 Green Lane, Chislehurst, Kent BR 7 6AG.
WW314 for further details

Capacitance meter

The ESP direct-reading capacitance meter provides measurement in the range 1 pF to $10 \mu \mathrm{~F}$. No balancing is required and the value is indicated on a linear scale. The instrument is powered by a 9 V battery whose condition is continuously monitored by a l.e.d. which will not light if the battery voltage drops to a level which will affect the performance. The meter is priced at $£ 25$ plus v.a.t. and is available from Electronic Services \& Products Ltd, 2a Badby Road, Daventry, Northants.
WW319 for further details

TV camera tubes

The latest Mullard television camera tubes for use in surveillance systems are claimed to operate in light levels of 10^{-2} lux, which is equivalent to half moonlight conditions. They consist of Vidicon tubes coupled to image intensifiers by means of fibre-optic plates. Each device contains its own high voltage power supply, a target signal amplifier and an automatic brightness level control. The brightness level control produces a signal that operates the camera iris enabling the tube to operate in varying light conditions. Mullard Ltd, Mullard

House, Torrington Place, London WC1. WW316 for further details

Decade resistance box

The D61/A is a six-decade resistance box offering a nominal accuracy of 1% from lohm to $1,111,110 \mathrm{ohm}$ in steps of 1 ohm . The junction between each decade is brought out to a socket, allowing the box to be used as a potential divider. Metal film 1% resistors are used except for the lohm decade which uses a ± 0.05 milliohm type. Maximum permissible current varies from $700 \mu \mathrm{~A}$ at 1 Mohm to 2.2 A at lohm. D. H. Davies, 4 Middleton Drive, Guisborough, Cleveland.
WW317 for further details

Fusible resistor

A new and patented thick-film fusible resistor from Erie is claimed to supersede the conventional wire-wound types in which solder has to melt. The resistor has a "flip top" mechanism which ejects an inert top to provide the fusing action. Two speeds of "flip tops" are available; red types fracture in five seconds at 15 W and ten seconds at 9 W while blue types fracture in 20 and 30 seconds respectively. Both types are flame retardant and designed to withstand 100% overload for one minute. Erie Electronics Ltd, South Denes, Great Yarmouth, Norfolk.
WW318 for further details

Solid State Devices

Names of suppliers of devices in this sectiun are given in abbreviation after each entry and in full at the end of the section.

Power transistors

International Rectifier have announced a range of discrete and Darlington, high voltage, power transistors. A feature of the new range is the use of glass passivation which allows "on-the-junction" hermetic sealing which in turn prevents the ingress of impurities.
WW350 for further details
International Rectifier

U.h.f. transistor

The MRF621 has been designed for 12.5 V operation between 406 and 512 MHz . The
transistors will provide 45 W at 470 MHz from a 12.5 V collector supply. Minimum power gain is 4.8 dB with a collector efficiency of 55%.
WW351 for further details
Motorola

Diode bridges

The SCBHO5F-4F series are fast recovery bridges in an "Alpac-T" aluminium package. Pi.i.v. ratings are from 50 to 400 V with an average output current of 10 A and a quoted recovery time of 250 ns .
WW352 for further details
Bourns

Regulator

A hybrid i.c. regulator, in a TO-3 package, called the MIVR $42050-055$ will deliver $u p$ to 5 A at $5 \mathrm{~V} \pm 0.1 \mathrm{~V}$ without the need for external components. The device incorporates short-circuit protection, voltage shutdown and current foldback. Power rating is 120 W at $25^{\circ} \mathrm{C}$.
WW353 for further details
GDS

1 GHz decade counters

A new range of decade counters comprises the SP8665B 1 GHz , the SP8666B 1.1 GHz , and the SP8667B 1.2 GHz counters, with guaranteed operation over the temperature range 0 to $70^{\circ} \mathrm{C}$. The counters feature a self-biasing clock input, and a clock inhibit input for direct gating capability. The devices have a typical power dissipation of 550 mW with a 6.8 V supply.
WW354 for further details
Plessey

Linear i.cs

Recent additious to the RCA range of linear i.cs are the TA6480 ty sound i.f. and audio output system, the CA1352 tv video amplifier, the CA3131 5W audio amplifier, and the CA810 7W audio power amplifier with thermal shutdown.
WW355 for further details
RCA

1024-bit r.a.m.

Sample quantities are now available of the 2102 1024-bit static r.a.m. which has an access time of 650,450 or 350 ns in the temperature range 0 to $70^{\circ} \mathrm{C}$. The devices are constructed using the Fairchild n -channel isoplanar process aud are produced in a 16 -pin d.i.l. package.
WW356 for further details
Fairchild

Suppliers

International Rectifier, Hurst Green, Oxted, Surrey.
Motorola Inc., Semiconductor Products Division, European Headquarters, P.O. Box 8, 16 Chemin de la Voie-Creuse, 1211 Geneva 20, Switzerland.
Bourns (Trimpot) Ltd, Hodford House, 17 High Street, Hounslow, Middx TW3 1TE.
GDS (Marketing) Ltd, Michaelmas House, Salt Hill, Bath Road, Slough, Bucks.
Plessey Semiconductors, Sales Office, Cheney Manor, Swindon, Wilts SN2 2QW.
RCA Ltd, Solid State-Europe, Sunbury-on-Thames, Middlesex.
Fairchild Semiconductor Ltd, Kingmaker House, Station Road, New Baruet, Herts.

The Greemwood guite to professional soldering.

 advanced products specifically for professional soldering applications.

For more detailed information about the comprehensive Greenwood range, send us the coupon today.

The Oryx 50. A temperature controlled mains soldering iron. (Temperature control within $\pm 2 \%$.) Adjustment ($200^{\circ}-400^{\circ} \mathrm{C}$) can be made whilst iron is operating using the same tip. Light, compact and easy to handle. A large 50W element loading gives rapid heating and high performance with constant tip temperature. Also available: Oryx safety stand.
push onto the stem of the iron. It has the unique advantage that you can change the element in seconds.

Please send me more details about the Greenwood range of soldering equipment.

Name
Address

Now-two fascinating ways to enjoy saving money!

 Britain's most original calculator

 Britain's most original calculator
 Components for Scientific kit

now in kit form
The Sinclair Scientific is an altogether remarkable calculator.
It offers logs, trig, and true scientific notation over a 200 -decade rangefeatures normally found only on calculators costing around $£ 100$ or more.
Yet even ready-built, the Sinclair Scientific costs a mere £32.35 (including VAT).
And as a kit it costs under E20!

Forget slide rules and four-figure tables!

With the functions available on the Scientific keyboard, you can handle directly
\sin and arcsin,
cos and arccos,
tan and arctan,
automatic squaring and doubling,
$\log _{10}$, antilog ${ }_{10}$, giving quick access to x^{v} (including square and other roots).
plus, of course, addition, subtraction, multiplication, division, and any calculations based on them.
In fact, virtually all complex scientific or mathematical calculations can be handled with ease.

So is the Scientific difficult to assemble?

No. Powerful though it is, the Sinclair
Scientific is a model of tidy engineering.
All parts are supplied - all you need provide is a soldering iron and a pair of cutters. Complete step-by-step instructions are provided, and our Service Department will back you throughout if you've any queries or problems.
Of course, we'll happily supply the Scientific or the Cambridge already built, if you prefer - they're still exceptional value. Use the order form.
(illustrated)

1. Coil
2. LSI chip
3. Interface chips
4. Case mouldings, with buttons, windows and light-up display in position
5. Printed circuit board
6. Keyboard panel
7. Electronic components pack (diodes, resistors, capacitors, etc.)
8. Battery assembly and on/off switch
9. Soft carrying wallet
10. Comprehensive instructions for use

Assembly time is about 3 hours.

Features of the Sinclair Scientific

$$
\text { B. } 5529-01
$$

- 12 functions on simple keyboard Basic logs and trig functions (and their inverses), all from a keyboard as simple as a normal arithmetic calculator's. 'Upper and lower case operation means basic arithmetic keys eacti frave two extra
- Scientific notation

Display showis 5 digit mantussa, 2 -digit exponent, both signable.

200-decade range
10^{-99} to 10^{-99}

- Reverse Polish logic

Post-fixed operators allow chain calculations of unlimited length eliminate need for $a n=$ button.

- 25-hour battery life

4 AAA manganese alkaline batteries (e.g. MN 2400) give 25 hours continuous use. Complete independence from external power.

Genuinely pocketable
$41 / 3^{\prime \prime} \times 2^{\prime \prime} \times 11 / 16^{\prime \prime}$. Weight 4 oz . Attractively styled in grey, blue and white.

Sinclair Cambridge kit $\frac{\text { Now only }}{814.95}$

At its new low price, the original Sinclair Cambridge kit remains unbeatable value
In less than a year, the Cambridge has become Britain's most popular pocket calculator.
It's not surprising. Check the features below - then ask yourself what other pocket calculator offers such a powerful package at such a reasonable price.

Components for Cambridge kit

1. Coil
2. LSI chip
3. Interface chip
4. Thick film resistor pack
5. Case mouldings, with buttons, window and light-up display in position
6. Printed circuit board
7. Keyboard panel
8. Electronic components pack (diodes, resistors, capacitors, transistor)
9. Battery clips and on/off switch
10. Soft wallet

Assembly time is about 3 hours.

Features of the Sinclair Cambridge

Take advantage of this money-back, no-risk offer today The Sinclair Cambridge and Scientific kits are fully guaranteed. Return either kit within 10 days, and we'll refund your money without question.
All parts are tested and checked before despatch - and we guarantee any correctly-assembied calculator for one year. (This guarantee also applies to calculators supplied in built form.)
Simply fill in the preferential order form below and slip it in the post today.

Scientific

Price in kit form $£ 19.95$ inc. VAT. Price built $£ 32.35$ inc. VAT. Cambridge
Price in kit form f 14.95 inc. VAT.
Price built $£ 21.55$ inc. VAT.

To: Sinclair Radionics Ltd, FREEPOST, St Ives, Huntingdon, Cambs. PE174BR

Please send me
Sinclair Scientific kit at $£ 19.95$

- Sinclair Scientific built at $£ 32.35$

E Sinclair Cambridge kit at $£ 14.95$
\square Sinclair Cambridge built at $£ 21.55$
All prices include 8\% VAT.

* I enclose a cheque for \mathbb{E} \qquad made out to Sinclair Radionics Ltd, and crossed.
*Please debit my *Barclaycard/ Access account. Account number
* Delete as required.

Signed

Name

Address

Please print. FREEPOST - no stamp
needed.
WW/12/74

Sinclair Radionics Ltd,
FREEPOST, St Ives.
Huntingdon, Cambs. PE174BR.
Reg. No: 699483 England. VAT Reg. No: 213817088.

A cartridge in a pear tree.

What a superb Christmas Gift a Shure V-15 Type III would be! With it you could hear the true sound of pipers piping, drummers drumming, rings ringing. As the giver, you would make a Hi-Fi enthusiast supremely happy not only at Christmas time but throughout the years to come. As a last resort, if nobody else takes the hint, why not give one to yourself!

How quo was my status?

In the October issue the Editor sprang to the stirrup to bring us the good news that active steps are being taken to improve our professional status. As one whose status only departs from the zero line to swing negative I fervently applaud this noble project.
In his communiqué the Editor emphasized the importance of status and, as ever, Sir is so right. I remember one instance at a Farnborough Air Show. I'd been invited to a wining and dining session by a couple of high-powered aviation executives who were under the impression (rightly) that our Chairman was in the market for a private heavier-than-air machine. They were also under the impression (terribly wrongly) that I had some pull with the Old Man. (Actually they'd confused me with another chap of the same name who was a big wheel in our company.) The rendezvous they'd chosen resembled a morgue with waiters, but the food was cordon bleu stuff so I let them stay confused. Not until the coffee-and-liqueurs stage had been reached was the conversation ever-sodelicately steered around to executive aircraft, whereupon the truth was revealed and it wasn't long before I was cast forth into outer darkness.

Upon reflection, this last bit isn't quite true, for the hotel forecourt, like its customers, was well lit. I was halfway across it when my way was barred by a drunken Irishman who was built roughly to the scale of the Giant's Causeway. Without ado he seized my lapel in one massive paw and swept his other arm around in a magnificent are which encompassed the assembled battalion of Mercs, Jags and Rolls-Royces.
"If yez ask me," he said, thrusting his seven o'clock shadow to within three inches of mine, "if yez ask me, dese are nudding but a bunch of ****** status symbols!" And releasing his grip he lurched off into the night. So did I, but in the opposite direction; I didn't want to be in the immediate vicinity if a Rolls suddenly went off bang. But I couldn't help agreeing with the expressed philosophy. An engineer with a five-year-old Mini
doesn't stand a dog's chance with the dollies on the Air Show stands when these counter-jumpers with their hired status symbols are around. So vive le status!
The brisk, ambitious lad who is contemplating entering electronics should have no great difficulty in acquiring a status which is instantly recognizable throughout the profession, but there are short cuts to the top of the tree. As a first step he should hang on at university for as long as the state and his parents can be coerced into subsidizing him. During this foetal phase he should collect as many degrees as possible, including, naturally, a Ph.D. This won't necessarily give him the engineering capability of replacing a busted fuse but it looks very fetching on an application for a job. A word of warning, however. I believe that in the USA Ph.Ds are so thick on the ground (I use the term "thick" to mean a high population level and not in its "thick as two planks" connotation) that only the medical profession uses the word "doctor". So if you do get one, don't emigrate to the States.

If you must go into the electronics industry, join a big firm. Having got a Ph.D. on the payroll they won't know what to do with you, so you can easily get yourself lost in the organization. Join as many learned societies as you can and spend your time in the sanctuary of the firm's library, writing papers for their Proceedings. Provided that you make them completely unintelligible the learned societies will publish them and you'll soon establish an enviable reputation for appearances in the literature. You are now well on your way to becoming a world authority on the sex life of the electron (or whatever your chosen subject is) and invitations to speak at conferences and symposia will flow in. Choose your acceptances with care, selecting those which coincide in venue and timing with the Motor Show, the Boat Show or whatever function forms your particular interest. Many symposia are held abroad, usually in some warm, exotic locality; with care, you can spend nine months of the year overseas, living on your expense account. Your firm will be so bucked at all this they they'll create you a Plenipotentiary Scientific Consultant which merely means that what you've formerly been doing under cover can now be done in the open.

Other forms of status in industry are often more apparent than real. Long ago, firms tumbled to the fact that the tea-boy works better if he's called a Stimulant Provision Officer and that the arrangement operates to some extent in lieu of more pay. It works up to a point, but when everybody in the organization is an admiral you're back to square one, for status is relative, not absolute. There are other, more reliable, guidelines. In any given Product Division there may be a dozen managers; at tea break, eleven will send their secretaries for a cuppa from the automatic dispenser while one will get a pot of tea on a tray brought by a waitress. Guess who's the big wheel?

Offices are another status symbol. Titles who share an office with half a dozen
other titles don't rate in the hierarchy, but conversely, the news that you're to be given an office on your own does not necessarily mean that you've arrived. It could merely be that Works and Bricks have discovered a disused store cupboard and you're being bunged in there to get you out of everybody else's hair. Only when you move into a room big enough to house six, with carpet on the floor and a shapely blonde secretary installed in an outside office, can you feel that you're in the big league. From then on, promotion will take you to more and more opulent structures; from the Chairman's doorway, for instance, you can just glimpse his desk on a clear day while, for all you know, a couple of tigers may be lurking in the pile of the carpet.

But as the Editor points out, statusrecognition within the profession is relatively straightforward; it's recognition by the public that's the problem. They brush shoulders with us in the street in total unawareness that we're the chaps who've brought fulfilment to their lives. Without us they'd never have known those tender moments with Ena Sharples, neither could they ever go on safari to Mummerset to help the Archers with the carrot harvest. Little do these lesser mortals know that supermen are standing alongside them in the queue. That, if we chose to turn from electronics to some honest form of toil, we would divorce them for ever from sight and sound of Messrs Wilson, Heath, Thorpe, Savile, Blackburn, Waring et al. If they did know this, I'm sure they would make due obeisance.

The tragedy is that, away back in the Stone Age of radio, we-at least our forebears-had the adulation of the general public and lost it. If you have access to the early volumes of W. W., take a look at the photographs and you'll see what I mean. There he sits, this superman of old, stonefaced in front of a pile of ironmongery and curly wires; twin-banded earphones are clamped on his head; one hand is adjusting a stud-switch while the other is poised over a morse key: Clearly, matters were at crisis point when the picture was taken; a message from Mars, perhaps? Or an SOS from mid-Atlantic? The general public never saw these wizards in the flesh but gazed in awe at their pictures, knowing that they conversed not in mortal tongues but in an alien dot-dash language of their own. Then along came the loudspeaker and the microphone and killed the mystery stone dead. I think the headphones were the key feature; shorn of those we became indistinguishable from the common herd.

So the problem resolves itself into one of instant recognition; here, I think we might learn from the Armed Services, with their insignia. Couldn'e we, for instance, borrow the hand grasping a bunch of straws that the RAF use to distinguish their electronics personnel? On second thoughts, no; it isn't showy enough. Personally, I think something along the lines of Batman's uniform is called for. That really should do something for our public image.

General index

Abstract

The general index is followed by classified and authors' sections. The classified index is divided into the following: audio and acoustics; circards; circuit ideas; circuitry and circuit design; communications; constructional designs; editorials; education and instructional; exhibitions and conferences; letters to the editor; measurement and test; news of the month; project; realm of microwaves; research notes and space news.

AES Convention-Copenhagen, 114 May
APRS 1974, 240 July
ABOUT PEOPLE, 50 Mar., 254 July, 286 Aug., 462 Nov.
Active cross over networks, D. C. Read, 443 Nov.
filters for loudspeakers, Addition and Correction to Dec. ' 73 article, 38 Mar.
Aerial, rhombic TV, A. B. Starks-Field, 477 Dec.
Alarm seal of approval. 18 Mar .
Alarm circuits, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 99 Apr .

Amateur radio, mobile, N. A. S. Fitch, 322 Sept.
Amplifier distortion, reducing, A. M. Sandman. 367 Oct, liquid-cooled power, I. L. Stefani \& R. Perryman, 505 Dec.
Amplifiers, current-differencing, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 308 Aug., 391 Oct., 508 Dec.
wideband, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 45 Mar.

ANNOUNCEMENTS, 50 Mar .
Audibility of phase distortion, B, B, Bauer, 27 Mar.
Audio f.e.t. power transistors, 223 July

- Festival and Fair-1974. International, 389 Oct.
- products, 161 May

Balloon broadeasting and communications, R. A. Ilgner \& A. A. Moghadam, 364 Oct.

Baxandall tone control revisited, M. V. Thomas, 341 Sept.
BOOKS RECEIVED, 202 June, 219 July, 282 \& 306 Aug. 357 Sept.
Bridge oscillators, F. Arthur, 303 Aug.
Broadcasting and communications, balloon, R. A. Igner \& A. A. Moghadam, 364 Oct.
-- from satellites, television, D. B. Spencer \& K. G. Freeman, 39 Mar .
—— in West Germany, traflic information, R. C. V. Macario, 95 Apr.
-., quadraphonic, M. J. Carey \& J. C. Sager, 422 Nov. the future of medium- and long-wave, J. G. Spencer, 266 Aug.

Calculator components offer, electronic, 49 Mar., Modification, 334 Sept., Letters, 150 May, 230 July, 346 Sept.
Capacitors, R. A. Fairs, 510 Dec.
Charge-coupled devices, E. W. Williams. 472 Dec.
Checking peak inverse ratings, J. M. Osborne, 44 Mar.
Choose the right f.e.t., T. Jones, 299 Aug.
Circuit diagram layout, S. W. Amos, 451 Nov.
CIRCUIT IDEAS, 18 Mar., 123 May, 196 June, 239 July.
272 Aug., 321 Sept., 380 Oct., 463 Nov., 503 Dec.
Clock and calendar, digital, J. F. K. Nosworthy \& N. J.
Roffe, 231 July, 337 Sept., 491 Dec.
Clutter-free radar for cars, J. Shefer, R. J. Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June

Colour separation overlay, G. Dann, 90 Apr., Letters, 180 June
-- sound system design, J. R. Penketh, 110 May, Letters, 229 July, 388 Oct.
TV tube developments, 85 Apr., Letters, 388 Oct. TV tube developments, 85 Apr.,
television display, flat, 281 Aug.
COMING EVENTS, 278 Aug., 352 Sept.
Communications receiver, synthesized, R. F. E. Winn, 413 Oct.
-74,69 Apr., 147 May
Components exhibition, Paris, 63 Apr.
offer, electronic calculator, 49 Mar,, Modification. 334 Sept., Letters. 150 May, 230 July, 346 Sept.
CONFERENCES AND EXHIBITIONS, 14 Mar.
Counters, an introduction to digital, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 130 May
Cross-over networks, active, D. C. Read, 443 Nov,
Current-differencing amplifiers. J. Carruthers, J. H, Evans, J. Kinsler \& P. Williams, 308 Aug., 391 Oct., 508 Dec.
Curve tracer, an f.e.t., L. G. Cuthbert, 4 Mar., 101 Apr.
D.c. motors, thyristor control of shunt-wound, F. Butler, 325 Sept.
Development timer, photographic, R. G. Wicker, 87 Apr.
Digital clock and calendar, J. F. K. Nosworthy \& N. J. Roffe, 231 July, 337 Sept.. 491 Dec. counters, an introduction to, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 130 May

- meter for the blind, T. C. R. S. Fowler, 283 Aug. speedometer using c.m.o.s., A. Bishop \& A. Woodruff, 316 Sept., 382 Oct.
-_ television recording, 185 June
Distortion, audibility of phase, B. B. Bauer, 27 Mar .
Distortion, audibility of phase, B. B. Bauer, 27 Mar .
reducing amplifier, A. M. Sandman, 367 Oct .
Dolby f.m. transmission in the UK?, B. Lane, 237 July, Letters, 344 Sept.
Doppler distortion in loudspeakers, J. Moir, 65 Apr., Letters, 181 June, 280 Aug., 386 Oct.
Dummy head, not such a, D. J. Meares, 335 Sept.
E.m.f.? what is, M. G. Scroggic, 291 Aug., Letlers, 387 Oct. EDITORIALS, 1 Mar., 57 Apr., 109 May, 163 June, 215 July, 265 Aug., 315 Sept.. 363 Oct.. 421 Nov.. 471 Dec. Letters, 180 June, 228 July
Electricity and magnetism?, "Cathode Ray", 347 Sept., 393 Oct .
Electronic calculator components offer, 49 Mar. Modification, 334 Sept., Letters, 150 May, 230 July, 346 Sept.
- ignition techniques, J. R. Watkinson, 216 July, Correction, 349 Sept., Letters, 386,387 Oct.
- piano design, G. Cowic, 8 Mar., 75 Apr., 143 May, piano design, G. Cowic, 8 Mar., 75 Apr., 143 May,
Addendum, 190 June, Letters, 181 June, 279,280 Aug., 346 Sept., 386 Oct.
- telephone exchanges, M. T. Hills, 164 June, 241 July
F.e.t., choose the right, T. Jones, 299 Aug.
- curve tracer, L. G. Cuthbert, 4 Mar., 101 Apr.
F.m. tuner, novel stereo, J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
thoming indicator, sensitive, J. A. Skingley, 173 June, Luning indicator, sensitive,
Feedback in loudspeakers, motional. H. D. Harwood, 51 Mar.
Filter, mains rejection tracking, K. F. Knott \& L. Unsworth, 375 Oct.
Flashmeter, photographic, R. Lewis, 273 Aug.
Flat colour television display, 281 Aug.
Frequency meter, signal, G. Lomas, 429 Nov.
Future of medium- and long-wave broadcasting, J. G. Spencer, 266 Aug.

Gravity waves, Scottish search for, 155 May
Gughielmo Marconi, W. J. Baker, 81 Apr.

HF PREDICTIONS, 48 Mar., 80 Apr., 145 May, 195 June, 236 July, 282 Aug., 343 Sept., 385 Oct., 425 Nov., 495 Dec.
Horn loudspeaker design, J. Dinsdale, 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
on the dilemma of a, Heather Ann Dinsdale, 222 July

IBC notes, 458 Nov.

I.cs for radio, audio and television, 234 July

Ignition techniques, electronic, J. R. Watkinson, 216 July, Correction, 349 Sept., Letters, 386, 387 Oct.
Indicator, sensitive f.m. tuning, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Information broadcasting in West Germany, traffic, R. C. V. Macario, 95 Apr.
Instruments Electronics Automation, 93 Apr.
Integrated injection logic, 486 Dec .
Interference, radio-a review, A. S. McLachlan, J. H. Ainley \& R. J. Harry, 191 June, 255 July
International Audio Festival and Fair-1974, 389 Oct.
Introduction to digital counters, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 130 May

Landing aid, microwave, 25 Mar .
Laser wirephoto system, 183 June
Layout, circuit diagram, S. W. Amos, 451 Nov.
LETTERS TO THE EDITOR, 15 Mar., 72 Aprı, 148 May, 180 June, 228 July, 279 Aug., 344 Sept., 386 Oct., 426 Nov., 496 Dec.
Liquid-cooled power amplifier, 1. L. Stefani \& R. Perryman, 505 Dec.
LITERATURE RECEIVED, 24 Mar,, 103 Apr., 254 July, 340 Sept., 385 Oct., 448 Nov.,
Logic. integrated injection, 486 Dec .
Loudspeaker cabinets, non-linearity of air in, H. D. Harwood, 459 Noy.

- design, horn, J. Dinsdale, 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
Loudspeakers, active filters for, Addition and Correction to Dec. ' 73 article, 38 Mar.
-, Doppler distortion in, J. Moir, 65 Apr., Letters, 181 June, 280 Aug., 386 Oct.
motional feedback in, H. D. Harwood, 51 Mar.
Low-loss optical fibre, 395 Oct.
Magnetism, electricity and, "Cathode Ray", 347 Sepr., 393 Oct.
Mains rejection tracking filter, K. F. Knott \& L. Unsworth, 375 Oct.
Marconi, Guglielmo, W. J. Baker, 81 Apr.
Measurement, a problem of, T. Roddam, 156 May, Letters, 230 July, 346 Sept.
Medium- and long-wave broadcasting, the future of, J. G. Spencer, 266 Aug.

MEETINGS. 371 Oct., 464 Nov. 479 Dec.
Meter for the blind, digital, T. C. R. S. Fowler, 283 Aug. signal-frequency, G. Lomas, 429 Nov.
Microphone survey, J. Dwyer, 402 Oct.
Microwave landing aid, 25 Mar.
Mobile amateur radio, N. A. S. Fitch, 322 Sept.
Modulation studies, receiver for, 417 Oct .
Modulator/demodulator for a magnetic tape recorder, simple f.m., B. D. Jordan, 29 Mar.
Motional feedback in loudspeakers, H. D. Harwood, 51 Mar.
Motors, thyristor control of shunt-wound, d.c., F. Butler, 325 Sept.
Multimeters, B. Sexton, 31 Mar.
New exhibition for London, 464 Nov.
NEW PRODUCTS, 52 Mar., 104 Apr., 158 May, 207 June, 260 July, 310 Aug., 359 Sept., 418 Oct., 466 Nov., 516 Dec.
NEWS OF THE MONTH, 6 Mar., 70 Apr., 115 May, 170 June, 220 July, 289 Aug., 329 Sept., 373 Oct., 441 Nov., 480 Dec.
Non-linearity of air in loudspeaker cabinets, H. D. Harwood, 459 Nov.
Not such a dummy head, D. J. Meares, 335 Sept.
Novel stereo f.m. tuner, J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
Ohms per volt, "Cathode Ray", 253 July
On the dilemma of a horn, Heather Ann Dinsdale, 222 July
Optical fibre, low-loss, 395 Oct.
Optically-coupled v.f.o., A. K. Langford, 455 Nov.
Oscillators, bridge, F. Arthur, 303 Aug.
Overlay, colour separation, G. Dann, 90 Apr., Letters, 180 June

Paris components exhibition, 63 Apr.
Pattern recognition circuits, W. K. Taylor \& J. J. Witkowski, 332 Sept.
Peak inverse ratings, checking, J. M. Osborne, 44 Mar.
Peak inverse ratings, checking, J. M. Osborne, 44 M
Phase distortion, audibility of, B. B. Bauer, 27 Mar .
Photographic development timer, R. G. Wicker, 87 Apr.
Piano design,er, R. Lewis, 273 Aug.
Piano design, electronic, G. Cowie, 8 Mar., 75 Apr., 143 May, Addendum, 190 June, Letters, 181 June, 279, 280 Aug., 346 Sept., 386 Oct.
Pocket v.h.f. transceiver, D. A. Tong, 245 July, 293 Aug. Portable television camera, 454 Nov.
Power amplifier, liquid-cooled, I. L. Stefani \& R. Perryman, 505 Dec .
Problem of measurement, T. Roddam, 156 May, Letters, 230 July, 346 Sept.
Professional sound recording, W. E. Anderton, 211 June

Programming the "Scientific", N. H. Searle, 203 June
Psychoacoustics of surround sound, M. Gerzon, 483 Dec.
Pulse modulators, J. Carruthers, J. H. Evans, J. Kinsler \& P. Williams, 204 June

Quadraphonic broadcasting. M. J. Carey \& J. C. Sager, 422 Nov.

- quandary, B. J. Shelicy, 235 July, Letters, 344 Sepr.

Radar for cars, clutter-free, J. Shefer, R. J. Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June

Radio astronomy as a school activity, J. C. Codling. 139 May
_- interference-a review, A. S. McLachlan, J. H Ainley \& R. J. Harry, 191 June, 255 July
REAL \& IMAGINARARY, "Vector", 108 Apr., 264 July, 314 Aug., 470 Nov., 519 Dec. Letters, 387 Oct.
REALM OF MICROWAVES, M. W. Hosking, 151 May, 397 Oct.
Receiver for modulation studies, 417 Oct.
Receiver for modulation studies, 417 Oct. , Fynthesized communications, R. F. Winn, synthesia.
413 Oct .
Recognition circuits, pattern, W. K. Taylor \& J. J. Witkowski, 332 Sept.
Recording and the law, tape, H. D. Ford, 175 June professional sound, W. E. Anderton, 211 June
Reducing amplifier distortion, A. M. Sandman, 367 Oct.
RESEARCH NOTES, 64 Apr., 179 June, 307 Aug., 372 Oct. Letters, 182 June
Rhombic TV aerial, A. B. Starks-Fjeld, 477 Dec.
Salvation for city traffic, 301 Aug.
Satellites ground station, weather, G. R. Kennedy, 435 Nov., 487 Dec . K. G. Freeman, 39 Mar .

School projects, the value of, E. R. Laithwaite, 2 Mar.
Scottish search for gravity waves, 155 May
Sensitive f.m. tuning indicator, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Signal-frequency meter, G. Lomas, 429 Nov.
Simple f.m. modulator/demodulator for a magnetic tape recorder, B. D. Jordan, 29 Mar ,
SIXTY YEARS AGO, 26 Mar., 86 Apr., 122 May, 271 Aug., 349 Sept., 395 Oct., 457 Nov., 507 Dec.
Sonex Europe 75, 454 Nov.
Sound recording, professional, W. E. Anderton, 211 June
SPACE NEWS, 287 Aug., 396 Oct., 482 Dec.
Speedometer using c.m.o.s., a digital, A. Bishop \& A. Woodruft, 316 Sept., 382 Oct.
Standard time satellite, 401 Oct.
Surround sound, psychoacoustics of, M. Gerzon, 483 Dec.
Surround sound, psychoacoustics of, M. Gerzon, 483 Dec.
Synthesized communications receiver, R. F. E. Winn, 413 Oct.
TV tube developments, colour, 85 Apr., Letters, 388 Oct.
Tape recorder, simple f.m. modulator/demodulator for a magnetic, B. D. Jordan, 29 Mar.
Telephocording and the law, H. D. Ford, 175 June
Telephone exchanges, electronic, M. T. Hills, 164 June, 241 July
Telephoning at 6,000 words a minute, 26 Mar .
"Teleprinter" with a traverse display, B. T. Evans, 353 Sept.
Television broadeasting from satellites, D. B. Spencer \&K.G. Freeman, 39 Mar. Freeman, 39 Mar.
display, flat colour, 281 Aug.
—— recording, digital, 185 June
The short view, 259 July
Thyristor control of shunt-wound d.c. motors, F. Butler, 325 Sept.
Timer, photographic development, R. G. Wicker, 87 Apr.
Tone control revisited, Baxandall, M. V. Thomas, 341 Sept.
Tracking filter, mains rejection, K. F. Knott \& L. Unsworth, 375 Oct.
Traffic information broadcasting in West Germany, R. C. V. Macario, 95 Apr .
Transceiver, pocket v.h.f., D. A. Tong, 245 July, 293 Aug.
Transistors, audio f.e.t. power, 223 July
Transmission in the UK?. Dolby f.m., B. Lane, 237 July, Letters, 344 Sept.

- lines for the birdwatcher, P. I. Day, 350 Sept.

Tuner, novel stereo f.m., J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
Tuning aid, digital, W. S. Pike, 224 July
-- indicator, sensitive f.m., J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
V.f.o., optically-coupled, A. K. Langford, 455 Nov,
V.h.f. transceiver, pocket, D. A. Tong, 245 July, 293 Aug.

Value of school projects, E. R. Laithwaite, 2 Mar.
"Vector" articles:
"A voice crying in the wilderness . . .", 108 Apr., Electronics; the road ahead, 264 July Just drop me a line ...? 314 Aug., Letters, 387 Oct., "More things in Heaven and Earth ..,", 170 Nov. How quo was my status?, 519 Dec .

Weather satellites ground station, G. R. Kennedy, 435 Nov., 487 Dec.
Wescon 1974 convention, A. Harris, 499 Dcc.
What is e.m.f?, M. G. Scroggie, 291 Aug., Letiers, 387 Oct.
Wideband amplifiers, J. Carruthers, J. H. Evans, J. Kinsier \& P. Williams, 45 Mar .
Wirephoto system, laser, 183 June
WORLD OF AMATEUR RADIO, 56 Mar., 98 Apr., 146 May, 198 June, 244 July, 302 Aug., 358 Sept., 412 Oct., 465 Nov., 515 Dec.

CLASSIFIED INDEX

ALDIO \& ACOUSTICS

Active cross-over networks, D. C. Read, 443 Nov.
filters for loudspeakers, Addition and Correction to Dec. ' 73 article, 38 Mar.
Amplifier distortion, reducing, A. M. Sandman, 367 Oct. Audibility of phase distortion, B. B. Bauer, 27 Mar.
Audio f.e.t. power transistors, 223 July
——' 74 at Harrogate, B. Lane, 449 Nov.
Baxandall tone control revisited, M. V. Thomas, 341 Sept.
Broadcasting, quadraphonic, M. J. Carey \& J. C. Sager, 422 Nov.
Colour-sound system design, J. R. Penketh, 110 May, Correction, 349 Sept., Letters, 229 July, 388 Oct.
Cross-over networks, active, D. C. Read, 443 Nov.
Digital tuning aid, W.S. Pike, 224 July
Distortion, audibility of phase, B. B. Bauer, 27 Mar .
Distortion, audibility of phase, B. B. Bauer, 27 Mar.
Dolby f.m. transmission in the UK?, B. Lane, 237 July, Letters, 344 Sept.
Doppler distortion in loudspeakers, J. Moir, 65 Apr., Letters, 181 June, 280 Aug., 386 Oct.
Dummy head, not such a, D. J. Meares, 335 Sept.
Electronic piano design, G. Cowie, 8 Mar., 75 Apr., 143 May, Addendum, 190 June, Letters, 181 June, 279. 280 Aug., 346 Sept., 386 Oct.
F.m. tuner, novel stereo, J. A. Skingley \& N. C. Thompson, 58 Apr ., 124 May
tuning indicator, sensitive, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Feedback in loudspeakers, motional, H. D. Harwood, 51 Mar.
Horn loudspeaker design, J. Dinsdale. 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
_-, on the dilemma of a, Heather Ann Dinsdale, 222 July
Indicator, sensitive f.m. tuning, J. A. Skingley, 173 June, Letters, 279 Aug, 388 Oct.

Liquid-cooled power amplifier, I. L. Stefani \& R. Perryman, 505 Dec .
Loudspeaker cabinets, non-linearity of air in, H. D. Harwood, 459 Nov.
Loudspeakers, active filters for, Addition and Correction to Dec. ' 73 article, 38 Mar.
——, doppler distortion in, J. Moir, 65 Apr., Letters, 181 June, 280 Aug., 386 Oct.
——, motional feedback in, H. D. Harwood, 51 Mar.
Microphone survey, J. Dwyer, 402 Oct.
Modulator/demodulator for a magnetic tape recorder, simple f.m., B. D. Jordan, 29 Mar.

Motional feedback in loudspeakers, H. D. Harwood, 51 Mar.
Non-linearity of air in loudspeaker cabinets, H. D. Harwood, 459 Nov.
Not such a dummy head, D. J. Meares, 335 Sept.
Novel stereo f.m. tuner, J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May

On the dilemma of a horn, Heather Ann Dinsdale, 222 July
Phase distortion, audibility of, B. B. Bauer, 27 Mar.
Piano design, electronic, G. Cowie, 8 Mar., 75 Apr., 143 May, Addendum, 190 June, Letters, 181 June, 279, 280 Aug., 346 Sept., 386 Oct.
Power transistors, audio f.e.t., 223 July
Professional sound recording, W. E. Anderton, 211 June
Psychoacoustics of surround sound, M. Gerzon, 483 Dec.
Quadraphonic broadcasting, M. J. Carey \& J. C. Sager, 422 Nov.
—— quandry, B. J. Shelley, 235 July, Letters, 344 Sept.
Recording and the law, tape, H. D. Ford, 175 June Reducing amplifier distortion, A. M. Sandman. 367 Oct.

Sensitive f.m. tuning indicator, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Simple f.m. modulator/demodulator for a magnetic tape recorder, B. D. Jordan, 29 Mar.
Sound recording, professional, W. E. Anderton, 211 June Surround sound, psychoacoustics of, M. Gerzon, 483 Dec.
Tape recorder, simple f.m. modulator/demodulator for a magnetic, B. D. Jordan, 29 Mar.
recording and the law, H. D. Ford, 175 June
Tone control revisited, Baxandall, M. V. Thomas, 341 Sept.
Transistors, audio f.e.t. power, 223 July
Transmission in the UK?, Dolby f.m., R. Lane, 237 July, Letters, 344 Sept.
Tuner, novel stereo f.m., J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
Tuning aid, digital, W. S. Pike, 224 July
indicator, sensitive f.m.. J. A. Skingley, 173 June,
Letters, 279 Aug., 388 Oct.

CIRCARDS

Alarm circuits, 99 Apr.
Amplifiers, current-differencing, 308 Aug., 391 Oct.
—, wideband, 45 Mar .

Counters, an introduction to digitat, 130 May
Current-differencing amplifiers, 308 Aug., 391 Oct., 508 Dec.

Introduction to digital counters, 130 May
Pulse modulators, 204 June
Wideband amplifiers, 45 Mar .

CIRCUTT IDEAS

Active sum and difference circuit, B. J. Shelley, 239 July
An l.e.d. synchroscope, R. H. Pearson, 321 Sept.
Auto polarity switching for voltmeters, H. Wedemcyer, 380 Oct.
Class A amplifier uses three-transistor feedback circuit, novel 5 -watt, R. H. Pearson, 18 Mar.
Collision sensor for electronic "animals", 463 Nov.
Deflection coil driver for slow-scan television, M. Hadley, 18 Mar.
Dual limit comparator using single op-amp, G. K. Pickard, 504 Dec .

Electronic changeover switching, M. J. Sells, 503 Dec.
Foldback in current-limited supply, P. C. Bury, 239 July
Gated oscillator with rapid start, G. F. Butcher, 272 Aug,
High performance reference, M. Walne, 123 May
Improved a.f.c. for f.m. tuners, J. S. Wilson, 239 July

- accuracy for digital clocks, R. J. G. Lambley, 321 Sept.
- simple d to a converter, R. J. Chance, 503 Dec

Micropower low noise amp, C. Horwitz, 504 Dec.
Negative resistor, D. A. B. Miller, 197 June
Novel 5 -watt class A amplifier uses three-transistor feedback circuit, R. H. Pearson, 18 Mar .

Oscillator with current-controlled frequency, K. Kraus, 272 Aug.

Phase-locked loop teleprimter unit, K. S. Beddoe, Addition to Dec, '73 Circuit Idea, 239 July

RIAA-equalized preamplifier, S. F. Bywaters, 503 Dec.
Self-cancelling touch button control, P. G. Hinch, 380 Oct.
Sensitive null indicator, A. S. Holden, 381 Oct.
Simple code-operated switch or combination lock, S. Lamb, 196 June

- digital to analogue converter, D. James, 197 June flashing-l.e.d. timer, J. Jeffrey, 381 Oct. Q multiplier, 463 Nov.
S-meter, M. J. Shoobridge, 196 June
Slow-scan television, deflection coil driver for, M. Hadiey, 18 Mar.
Stable t.t.l. oscillator, M. Walne, 123 May
Stereo/mono switching, J. V. Yelland, 380 Oct.
Ten-digit code-operated switch or combination lock, K. E. Potter, 123 May
Timebase circuit, K. Padmanabhan, 196 June
Touch start of automatic rhythm device, K. B. Sorensen, 381 Oct.

Wide-range "joystick" control, I. R. Francis, 240 July
Wien oscillator with single component frequency control. P. C. F. Healy, 272 Aug.

CIRCUTTRY \& CIRCUIT DESIGN

Active cross-over networks, D. C. Read, 443 Nov. filters for loudspeakers, Addifion and Correction to Dec. ' 73 article, 38 Mar ,
Amplifier, liquid-cooled power, I. L. Stefani \& R. Perryman, 505 Dec.

- distortion. reducing, A. M. Sandman, 367 Oct,

Audio f.e.t. power transistors, 223 July
Baxandall tone control revisited, M. V. Thomas, 341 Sept. Bridge oscillators, F. Arthur, 303 Aug.
Calculator components offer, electronic, 49 Mar., Modification, 334 Sept., Letters, 150 May, 230 July, 346 Sept.
Choose the right f.e.t., T. Jones, 299 Aug.
Circuit diagram layout, S. W. Amos, 451 Nov.
Clutter-free radar for cars, J. Shefer, R. J. Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June
Colour-sound system design, J. R. Penketh, 110 May, Cor rection, 349 Sept., Letters, 229 July, 388 Oct.
Communications receiver, synthesized, R. F. E. Winn, 413 Oct.
Components offer, electronic calculator, 49 Mar ., Modification, 334 Sept., Letters, 150 May. 230 July, 346 Sept.
Cross-over networks, active, D. C. Read, 443 Nov,
D.c. motors, thyristor control of shunt-wound, E. Butler, 325 Sept.
Development timer, photographic, R. G. Wicker, 87 Apr.
Digital meter for the blind, T. C. R. S. Fowler, 283 Aug.

- speedometer using c.m.o.s., A. Bishop \& A. Woodruff, 316 Sept., 382 Oct.
tuning aid, W. S. Pike, 224 July
Distortion, reducing amplifier, A. M. Sandman, 367 Oct.
Electronic calculator components offer, 49 Mar., Modinication, 334 Sept., Letters, 150 May, 230 July, 346 Sept.
- ignition techniques, J. R. Watkinson, 216 July, Correcfion, 349 Sept., Letters, 386, 387 Oct.
- piano design, G. Cowie, 8 Mar., 75 Apr., 143 May, Addendum, 190 June, Letters, 181 Junc, 279, 280 Aug., 346 Sept., 386 Oct.
F.e.t., choose the right, T. Jones, 299 Aug.
F.m. tuner, novel stereo, J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
- tuning indicator, sensitive, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Filter, mains rejection tracking, K. F. Knott \& L. Unsworth, 375 Oct.
Flashmeter, photographic, R. Lewis, 273 Aug.
Frequency meter, signal, G. Lomas, 429 Nov.
Ignition techniques, electronic, J. R. Watkinson, 216 July, Correction, 349 Sept., Letters, 386, 387 Oct.
Indicator, sensitive f.m. tuning, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.

Layout, circuit diagram, S. W. Amos, 451 Nov.
Liquid-cooled power amplifier, I. L. Stefani \& R. Perryman, 505 Dec.
Loudspeakers, active filters for, Addition and Correction to Dec. ' 73 article, 38 Mar.

Mains rejection tracking filter, K. F. Knott \& L. Unsworth, 375 Oct.
Meter for the blind, digital, T. C. R. S. Fowler, 283 Aug
Modulator/demodulator, signal- Lomas, 429 Nov.
Modulator/demodulator for a magnetic tape recorder, simple f.m., B. D. Jordan, 29 Mar.

Motors, thyristor control of shunt-wound d.c., F. Butler, 325 Sept.
Novel stereo f.m. tuner, J. A. Skinglicy \& N. C. Thompson, 58 Apr., 124 May

Optically-coupled v.f.o., A. K. Langford, 455 Nov.
Oscillators, bridge, F. Arthur, 303 Aug.
Pattern recognition circuits, W. K. Taylor \& J. J. Witkowski, 332 Sept.
Photographic development timer, R. G. Wicker, 87 Apr.
Piano design, electronic,
Piano design, electronic, G. Cowie, 8 Mar., 75 Apr., 143 May, Addendum, 190 Junc, Letters, 181 June, 279, 280 Aug., 346 Sept., 386 Oct.
Pocket v.h.f. transceiver, D. A. Tong, 245 July, 293 Aug.
Power amplifier, liquid-cooled, I. L. Stefani \& R. Perryman, 505 Dec.

- transistors, audio f.e.t., 223 July

Radar for cars, clutter-free, J. Shefer, R. J. Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June
Receiver, synthesized communications, R. F. E. Winn, 413 ver, sym
Recognition circuits, pattern, W. K. Taylor \& J.J. Witkowski, 332 Sept.
Reducing amplifier distortion, A. M. Sandman, 367 Oct.
Satellites ground station, weather, G. R. Kennedy, 435 Nov., $_{4}$ 487 Dec.
Sensitive f.m. tuning indicator, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Signal-frequency meter, G. Lomas, 429 Nov.
Simple f.m. modulator/demodulator for a magnetic tape recorder, B. D. Jordan, 29 Mar .
Speedometer using c.m.o.s., a digital, A. Bishop \& A. Woodruff, 316 Sept., 382 Oct .
Synthesized communications receiver, R. F. E. Winn, 413 Oct.

Tape recorder, simple f.m. modulator/demodulator for a magnetic, B. D. Jordan, 29 Mar.
"Teieprinter" with a traverse display, B. T. Evans, 353 Sept. Thyristor control of shunt-wound d.c. motors, F. Butler, 325 Sept.
Timer, photographic development, R. G. Wicker, 87 Apr.
Tone control revisited, Baxandall, M. V. Thomas, 341 Sept.
Tracking filter, mains rejection, K. F. Knott \& L. Unsworth, 375 Oct.
Transceiver, pocket v.h.f., D. A. Tong, 245 July, 293 Aug.
Transistors, audio f.e.t. power, 223 July
Tuner, novel stereo f.m., J. A. Skingley \& N. C. Thompson, 58 Apr ., 124 May
Tuning aid digital, W. S. Pike, 224 July

- indicator, sensitive f.m., J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
V.f.a., optically coupled, A. K. Langford, 455 Nov. V.h.f. transceiver, pocket, D. A. Tong, 245 July, 293 Aug.

Weather satellites ground station, G. R. Kennedy, 435 Nov., 487 Dec.

COMMUNICATIONS

Aerial, rhombic TV, A. B. Starks-Field, 477 Dec.
Amateur radio, mobile, N. A. S. Fitch, 322 Sept.

Balloon broadcasting and communications, R. A. Hgner \& A. A. Moghadam, 364 Oct.

Broadcasting from satellites, television, D. B. Spencer \& K. G. Freeman, 39 Mar.

- in West Germany, traffic information, R. C. V. Macario, 95 Apr.
-_, quadraphonic, M. J. Carey \& J. C. Sager, 422 Nov.
_-, the future of medium- and long-wave, J. G. Spencer, 266 Aug.
Clutter-free radar for cars, J. Shefer, R. J. Klensch, G. Kapian \& H. C. Johnson, 117 May, 199 June
Colour separation overlay, G. Dann, 90 Apr., Letters, 180
\qquad June TV tube developments, 85 Apr., Letters, 388 Oct.
_- television display, flat, 281 Aug.
Communications receiver, synthesized, R. F. E. Winn, 413 Oct.

Digital television recording, 185 June
Electronic telephone exchanges, M. T. Hills, 164 June, 241 July
F.m. tuner, novel stereo, J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
tuning indicator, sensitive, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Flat colour television display, 281 Aug.
Future of medium- and long-wave broadcasting, J. G. Spencer, 266 Aug .

Indicator, sensitive f.m. tuning, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Information broadcasting in West Germany, traffic, R. C. V. Macario, 95 Apr .
Interference, radio-a review, A. S. McLachlan, J. H. Ainley \& R. J. Harry, 191 June, 255 July
Landing aid, microwave, 25 Mar .
Laser wirephoto system, 183 June
Low-loss optical fibre, 395 Oct.
Medium- and long-wave broadcasting, the future of, J. G. Spencer, 266 Aug.
Microwave landing aid, 25 Mar .
Mobile amateur radio, N. A. S. Fitch, 322 Sept.
Modulation studies, receiver for, 417 Oct.
Novel stereo f.m. turier, J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
Optical fibre, low-loss, 395 Oct.
Overlay, colour separation, G. Dann, 90 Apr, Letters, 180 June

Pocket v.h.f. Lransceiver, D. A. Tong, 245 July, 293 Aug.
Quadraphonic broadcasting, M. J. Carey \& J. C. Sager, 422 Nov.

Radar for cars, clutter-free, J. Shefer, R.J.Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June
Radio interference-a review, A. S. McLachlan, J. H. Ainley \& R. J. Harry, 191 June, 255 July
\longrightarrow mobile amateur, N. A. S. Fitch, 322 Sept.
Receiver for modulation studies, 417 Oct .
--, synthesized communications, R. F. E. Winn, 413 Oct.
Rhombic TV aerial, A. B. Starks-Field, 477 Dec.
Satellites ground station, weather, G. R. Kennedy, 435 Nov., 487 Dec. television broadca
Freeman, 39 Mar .
Sensitive f.m. tuning indicator, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Standard time satellite, 401 Oct.
Synthesized communications receiver, R. F. E. Winn, 413 Oct.

Telephone exchanges, electronic, M. T. Hills, 164 June, 241 July
Television broadcasting from satellites, D. B. Spencer \& K.G. Freeman, 39 Mar.
-_ display, flat colour, 281 Aug.
-Traffic recording, digital, 185 June
Traffic information broadcasting in West Germany, R. C. V. Macario, 95 Apr.
Transceiver, pocket v.h.f., D. A. Tong, 245 July, 293 Aug. Transmission lines for the birdwatcher, P. I. Day, 350 Sept.
Tuner, novel stereo f.m., J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
Tuning indicator, sensitive f.m., J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
TV tube developments, colour, 85 Apr, Letters, 388 Oct.
V.h.f. transceiver, pocket, D. A. Tong, 245 July, 293 Aug.

Weather satellites ground station, G. R. Kennedy, 435 Nov., 487 Dec.
Wirephoto system, laser, 183 June
CONSTRUCTIONAL DESIGNS
Active fillers forloudspeakers, Addition and Correction to Dec. ' 73 article, 38 Mar.

Colour-sound system design, J. R. Penketh, 110 May , Correction, 349 Sept., Letters, 229 July, 388 Oct.

Curve tracer, an f.c.t., L. G. Cuthbert, 4 Mar., 101 Apr.
D.c. motors, thyristor control of shunt-wound, F. Butler, 325 Sept.
Development timer, photographic, R. G. Wicker, 87 Apr.
Digital meter for the blind, T. C. R. S. Fowler, 283 Aug. speedometer using c.m.o.s., A. Bishop \& A. Woodruff, 316 Sept., 382 Oct.

Electronic piano design, G. Cowie, 8 Marn, 75 Apr., 143 May, Addendum, 190 June, Letters, 181 June, 279, 280 Aug., 346 Sept., 386 Oct.
F.e.t. curve tracer, L. G. Cuthbert, 4 Mar., 101 Apr.
F.m. tuner, novel stereo, J, A. Skingley \& N. C. Thompson, 58 Apr., 124 May
tuning indicator, sensitive, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Flashmeter, photographic, R. Lewis, 273 Aug.
Frequency meter, signal, G. Lomas, 429 Nov.
Horn loudspeaker design, J. Dinsdale, 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
Indicator, sensitive f.m. tuning, J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.

Loudspeaker design, horn, J. Dinsdale, 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
Loudspeakers, active filters for, Addition and Correction to Dec. ' 73 article, 38 Mar .

Meter for the blind, digital, T, C. R. S. Fowler, 283 Aug.
Modulator/demodulator for a magnetic tape recorder, simple f.m., B. D. Jordan, 29 Mar.

Motors, thyristor control of shunt-wound d.c., F. Butler, 325 Sept.
Novel stereo f.m. tuner, J. A, Skingley \& N. C. Thompson, 58 Apr., 124 May

Photographic development timer, R. G. Wicker, 87 Apr.

- flashmeter, R. Lewis, 273 Aug.

Piano design, electronic, G. Cowie, 8 Mar., 75 Apr., 143 May, Addendum, 190 June, Letters, 181 June, 279, 280 Aug., 346 Sept., 386 Oct.
Pocket v.h.f. transceiver, D. A. Tong, 245 July, 293 Aug.
Sensitive f.m. tuning indicator, J. A. Skingley, 173 June, Letlers, 279 Aug., 388 Oct.
Signal-frequency meter, G. Lomas, 429 Nov.
Simple f.m. modulator/demodulator for a magnetic tape recorder, B. D. Jordan, 29 Mar .
Speedometer using c.m.o.s., a digital, A. Bishop \& A. Woodruff, 316 Sept., 382 Oct.

Tape recorder, simple f.m. modulator/demodulator for a magnetic, B. D. Jordan, 29 Mar.
Thyristor control of shunt-wound d.c. motors, F, Butler, 325 Sept.
Timer, photographic development, R. G. Wicker, 87 Apr.
Transceiver, pocket v.h.f., D. A. Tong, 245 July, 293 Aug.
Tuner, novel stereo f.m.,. J. A. Skingley \& N. C. Thompson, 58 Apr., 124 May
Tuning indicator, sensitive f.m., J. A. Skingley, 173 June, Letters, 279 Aug., 388 Oct.
Vh.f. Iransceiver, pocket, D. A. Tong, 2453 uly, 293 Aug.
EDTTORIALS
Alienated music, 163 June
Ambiguity in diagrams, 421 Nov.
Concepts in electronics, 315 Sept.
New directions in sound, 471 Dec .
Personal data, 215 July
Pocket numeracy, 109 May, Letters, 228 July
Social responsibility in comnmunications, I Mar.
The importance of status, 363 Oct.
Using channels efficiently, 265 Aug.
What is an engineer worth?, 57 Apr., Letters, 180 June
EDUCATION \& INSTRUCTIONAL
Amateur radio, mobile, N. A. S. Fitch, 322 Sept.
Audibility of phase distortion, B. B. Bauer, 27 Mar.
Balloon broadcasting and communications, R. A. Ilgner \& A. A. Moghadam, 364 Oct.
Baxandall tone control revisited, M. V. Thomas, 341 Sept.
Bridge oscillators, F. Arthur, 303 Aug.
Broadcasting and communications, balloon, R. A. Ilgner \& A. A. Moghadam, 364 Oct.
from satellites, television, D. B. Spencer \& K. G. Freeman, 39 Mar.

- in West Germany, traffic information, R. C. V. Macario, 95 Apr.
-, the future of medium- and long-wave, J. G.Spencer, 266 Aug.

Capacitors, R. A. Fairs, 510 Dec.

Charge-coupled devices. E. W. Williams, 472 Dec
Checking peak inverse ratings, J. M. Osborne, 44 Mar.

Choose the right f.e.t., T. Jones, 299 Aug.
Circuit diagram layout, S. W. Amos, 451 Nov,
Clutter-free radar for cars, J. Shefer, R. J. Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June
Colour separation overlay, G. Dann, 90 Apr., Letters, 180 June
—— television display, 281 Aug.
Digital television recording, 185 June
Distortion, audibility of phase, B. B. Bauer, 27 Mar.
Dolby f.m. transmission in the UK?, B. Lane, 237 July, Letters, 344 Sept.
Dummy head, not such a, D. J. Meares, 335 Sept.
E.m.f.?, what is, M. G. Scroggie, 291 Aug., Letters, 387 Oct. Electricity and magnetism?, "Cathode Ray", 347 Sept., 393 Oct.
Electronic ignition techniques, J. R. Watkinson, 216 July, Correction, 349 Sept., Letters, 386, 387 Oct.
-_ telephonc exchanges, M. T. Hills, 164 June, 241 July
F.e.t., choose the right, T. Jones, 299 Aug.

Feedback in loudspeakers, motional, H. D. Harwood, 51 Mar.
Flat colour television display, 281 Aug.
Future of medium- and long-wave broadcasting, J. G. Spencer, 266 Aug.
Guglielmo Marconi, W. J. Baker, 81 Apr.
Horn loudspeaker design, J. Dinsdale, 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
I.cs for radio, audio and television, 234 July

Ignition techniques, electronic, J. R. Watkinson, 216 July, Correction, 349 Sept., Letters, 386, 387 Oct.
Information broadcasting in West Germany, traffic, R.C. V. Macario, 95 Apr.

Interference, radio-a review, A. S. McLachian, 1. H. - Ainley \& R. J. Harry, 191 June, 255 July

Landing aid, microwave, 25 Mar.
Laser wirephoto system, 183 June
Layout, circuit diagram, S. W. Amos, 451 Nov.
Loudspeaker cabinets, non-linearity of air in, H. D. Harwood, 459 Nov. design, horn, J. Dinsdale, 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
Loudspeakers, motional feedback in, H. D. Harwood, 51 Mar.

Magnetism, electricity and, "Cathode Ray", 347 Sept., 393 Oct.
Marconi, Guglielmo, W. J. Baker, 81 Apr.
Measurement, a problem of, T. Roddam, 156 May , Letters, 230 July, 346 Sept.
Medium- and long-wave broadcasting, the future of, J. G. Spencer, 266 Aug.

Microphone survey, J. Dwyer, 402 Oct.
Microwave landing aid, 25 Mar .
Mobile amateur radio, N. A. S. Fitch, 322 Sept.
Modulation studies, receiver for, 417 Oct.
Motional feedback in loudspeakers, H. D. Harwood, 51 Mar.

Non-linearity of air in loudspenker cabinets, H. D. Harwood, 459 Nov.
Not such a dummy head, D. J. Meares, 335 Sept.
Ohms per volt, "Cathode Ray", 253 July
Oscillators, bridge, F. Arthur, 303 Aug.
Overlay, colour separation, G. Dann, 90 Apr., Letters, 180 June
Pattern recognition circuits, W. K. Taylor \& J. J. Witkowski, 332 Sept.
Peak inverse ratings, checking, J. M. Osborne, 44 Mar.
Phase distortion, audibility of, B. B. Bauer, 27 Mar.
Problem of measurement, T. Roddam, 156 May, Letters, 230 July, 346 Sept.
Professional sound recording, W. E. Anderton, 211 June Programming the "Scientific", N. H. Searle, 203 June
Psychoacoustics of surround sound, M. Gerzon, 483 Dec.
Quadraphonic quandary, B. J. Shelley, 235 July, Letters, 344 Sept.
Radar for cars, clutter-free, J. Shefer, R. J. Klensch, G. Kaplan \& H. C. Johnson, 117 May, 199 June

Radio interference-a review, A. S. McLachlan, J. H. Ainley \& R. J. Harry, 191 June, 255 July mobile amateur, N. A. S. Fitch, 322 Sept.
Recciver for modulation studies, 417 Oct.
Recognition circuits, pattern, W. K. Taylor \& J. J. Witkowski, 332 Sept.
Recording, professional sound, W. E. Anderton, 211 June
Surround sound, p6ychoacousties of, M. Gerzon, 483 Dec.
Tape recording and the law, H. D. Ford, 175 June
Telephone exchanges, electronic, M. T. Hills, 164 June, 241 July
Television broadcasting from satellites, D. B. Spencer \& K. G. Freeman, 39 Mar .

- display, flat colour, 281 Aug. recording, digital, 185 June
Tone control revisited, Baxandall, M. V. Thomas, 341 Sept.
Traffic information broadcasting in West Germany, R.C. V. Macario, 95 Apr.

Transmission in the UK?, Dolby f.m., B. Lsme, 237 July, Letiers, 344 Sept.

- lines for the birdwatcher, P. I. Day, 350 Sept.

What is e.m.f.?, M. G. Scroggie, 291 Aug., Letters, 387 Oct.
Wirephoto system, laser, 183 June
EXHIBITIONS \& CONFERENCES
AES Convention-Copenhagen, 114 May
AES Convention-Co
APRS 1974, 240 July
APRS 1974, 240 July
Audio Festival and Fai
Audio Festival and Fair-1974. International, 389 Oct.
—— products, 161 May
—— 74 at Harrogate, B. Lane, 449 Nov.
Communications 74, 69 Apr., 147 May
Components exhibition, Paris, 63 Apr.
IBC notes, 458 Nov.
Instruments Electronics Automation, 93 Apr . International Audio Festival and Fair-1974, 389 Oct.

Paris components exhibition, 63 Apr .

Wescon 1974 convention. A. Harris. 499 Dec.

LETTERS TO THE EDITOR

Amateur radio repeaters. R. L. Glaisher, 428 Nov.
A problem of measurement, B. Jones, 230 July
A rather special environmental plea, G3HMO, 229 July
Active filter crossover networks, D. J. Bradshaw, 149 May
Amateur computer society, M. Dreyfus, 280 Aug.
_ radio book, R. Ham, 230 July
Audio visual groups, R. R. E. Pulman, 498 Dec.
Buying groups, A. Sproxton, 74 Apr.
Calculator as signal source, A. D. Thomas, 497 Dec. i.c., A. M. Coppin, 150 May, D. N. Gregory, 230 July, R. E. Smallwood, 346 Sept.
Colour separation overlay, C. Woolf, 180 June
Communications services, C. A. Hill, 387 Oct.
Component identification, S. J. Pardoe, 496 Dec.
Current flow controversy, "Cathode Ray", I49 May, C. H. Banthorpe, 228 July

Damping factor, P. J. Walker, 148 May, S. J. Court, 228 July, T. Marshall, 388 Oct., J. Moir, 498 Dec.
"Data off the beat", W. P. Nicol, 387 Oct.
Digital speedometer, N. H. Jennings. 497 Dec.
Dolby f.m. broadcasting, Head of Engineering Information Dept., BBC, 344 Sept.
Doppler in loudspeakers, P. Rasmussen, 181 June, D. H. Edgar, 280 Aug., J. Moir, 386 Oct., "Cathode Ray", 497 Dec.
E.m.f. and p.d., C. A. Hill, 387 Oct.

Electronic ignition, P. Bloom, 386 Oct., S. Baker, 387 Oct., D. Anderson, 426 Nov.

- piano design, M. Walne, 181 June, K. Mitchell, 280 Aug., G. Cowie, 386 Oct.
Electrostatic forces on pickups, M. P. Hide, 181 June, R. G. Holder, S. J. Pardoe, 280 Aug., J. A. Young, C. Bradshaw, 346 Sept., A. West, 498 Dec.

Engineers and technicians, A. Perry, 180 June
F.m. tuning indication, J. R. Watkinson, 279 Aug., J. Jaques, 388 Oct.
—— - indicator. M. G. Smart, 497 Dec,
Fast printed circuit etching, E. I. Szabó, 150 May
Frequency shifter for howl suppression, K. J. Young, 16 Mar .
Hi-fi equipment standards, H. Fischelmayer, 15 Mar .
Horn loudspeaker design, T. Hevreng, 180 June, D. C. Hamill, 345 Sept., J. Dinsdale, 497 Dec., R. N. Baldock. 497 Dec.
Howl suppression, M. Hartley Jones, 148 -May
Licences, B. Griffin, 74 Apr .
Logic nomenclature, C. H. Langton, 388 Oct.
Making p.c. boards, H. Wedemeyer, 498 Dec.
Model railway control system, P. Cowan, 72 Apr., R. A. Ganderton, 16 May
Modified automatic noise limiter, M. L. G. Oldfield, 73 Apr. Multimeters for blind students, G. P. Roberts, 73 Apr.

Neutron radiography, T. J. M. Robertson, 182 June
Noise measurement and dB, F. G. Canning, 15 Mar .
One off printed circuit boards, M. R. Yeo, I6 Mar.
Plug-in p.c. boards, R. N. Goodman, 72 Apr., J. R. Watkinson, 181 June, M. A. Tebbutt, 279 Aug. Printed circuits kit, J. H. Evans, 148 May - the easy way, J. S. Worthington, 229 July

Quadraphonic quandary, B. B. Bauer, 344 Sept.
Radiating coaxial cables, J. L. Goldberg \& A. J. Willis, 17 Mar.
Radio and TV museum, C. Matthews, 150 May
"Recording by car", A. Puffett, 150 May
Rectifier meter errors, P. Williams, 346 Sept,
Return to c / s ?, G. A. Cozens, 150 May
Soldering-iron leakage, A. Sproxton, 17 Mar., C. P.

Adamson, 149 May, C. E. H. Benson, 182 June, P. M. Clare, 229 July

Sound and light, B. J. McNaughton, 229 July, R. G. Key, 388 Oct.
-.- radio compression, C. Higham, 72 Apr., D. W. Hammond, M. D. Bass, 182 June
Speaking meter, J. T. Lloyd, 386 Oct.
Suicide soldering, D. T. A. Jack, 426 Nov.
Surround-sound with headphones, J. C. Tugwell, 16 Mar.
3D display from c.r.t., N. C. Rogers, 388 Oct.
TV picture interference, G. Cavarra, J. C. Steel, 73 Apr.
The cost of engineering. W. Ross. 72 Apr.
The cost of engineering. W. Ross. 72 Apr. F. Butler, 496 Dec .

Trials and tribulations, H. W. Barnard, 498 Dec.
Tuning electronic pianos, D. K. Taylor, 279 Aug., K. Palmer, 346 Sept.

Two stations on one receiver, D. J. Jefferies, 388 Oct.
Using c.m.o.s. devices, R. G. Young, 16 Mar .
pocket calculators, J. Osborne, 228 July

Valve amplifiers, D. J. Bradshaw, 150 May

What is e.m.f.?, P. J. Baxandali, 427 Nov., M. G. Scroggic, 427 Nov., F. C. Cole. 428 Nov.

MEASUREMENT \& TEST

Checking peak inverse ratings. J. M. Osborne, 44 Mar.
Development timer, photographic, R. G. Wicker, 87 Apr,
Digital meter for the blind, T. C. R. S. Fowler, 283 Aug.

- speedometer using c.m.o.s., A. Bishop \& A. Woodruff, 316 Sept., 382 Oct. tuning aid, W. S. Pike, 224 July
Doppler distortion in loudspeakers, J. Moir, 65 Apr., Letters, 181 Junc, 280 Aug., 386 Oct.

Flashmeter, photographic, R. Lewis, 273 Aug.
Frequency meter, signal, G. Lomas, 429 Nov.
Loudspeakers, Doppler distortion in, J. Moir, 65 Apr., Letters, 181 June, 280 Aug., 386 Oct.

Measurement, a problem of, T. Roddam, 156 May, Letters, 230 July, 346 Sept.
Meter for the blind, digital, T. C. R. S. Fowler, 283 Aug.
Multimeters, B. Sexton, 31 Mar.
Peak inverse ratings, checking, J. M. Osborne, 44 Mar.
Photographic development timer, R. G. Wicker, 87 Apr.
_-_flashmeter, R. Lewis, 273 Aug.
Problem of measurement, T. Roddam, 156 May, Letters, 230 July, 346 Sept.

Signal-frequency meter, G. Lomas, 429 Nov.
Specdometer using c.m.o.s., a digital, A. Bishop \& A. Woodruff, 316 Sept., 382 Oct.

Timer, photographic development, R. G. Wicker, 87 Apr.
Tuning aid, digital, W. S. Pike, 224 July

NEWS OF THE MONTH

Advance in magnetic-tape technology, 220 July
Anglo-French digital telecommunications pact, 70 Apr .
Arthur Bulgin, (Obit), 71 Apr .
Audio exhibitions merger?, 290 Aug.
Automated satellite station, 115 May
Broadcasting conference opened, 481 Dec .
Bus monitoring system, 290 Aug.
Business abroad for Britain, 480 Dec.
Call China by satellite, 115 May
Carphone service extended, 331 Sept.
Ceefax news, 289 Aug.
Channel link in service, 481 Dec.
Circards award, 71 Apr.
Colour recording by laser, 115 May
Component shortage-broken promises, 6 Mar .
Cross-channel phone hop-stage two, 7 Mar.

Data Act, 116 May

control on the APT, 329 Sept.
off the beat, 221 July, Letters, 387 Oct.
Dating ancient ceramics, 330 Sept.
Design Council competition, 290 Aug.
Diagnosis by ultrasonic waves, 331 Sept.
Dial-a-ride, 422 Nov.
Dial-a-nde, 422 Nov.
Dialling aid for Telex, 442 Nov.
Diailing aid for Telex, 442 Nov.
Display terminals for news pages, 116 May
Display terminals for news pages, 116 May
Doram dedicated to amateurs, 290 Aug.
Dot-scan television system, 6 Mar .
Electret cartridge introduced, 330 Sept.
Electric gas cookers, 480 Dec.
Electrical fatalities in the home, 329 Sept. -_measurements seminar, 116 May Electronic component show '75, 171 June
-- licence plate, 373 Oct.
Electronica 74, 331 Sept.
Energy conversion alternatives, 480 Dec .
Error-free underwater communication, 71 Apr.
Fall in TV deliveries, 172 June
Flat-screen television sets?, 220 July
Flight simulation developments, 289 Aug.

Future of calculators, 221 July

 - telecoms challenge, 171 JuneGiro errors detected, 481 Dec .
Heart-rate computer, 330 Sept. Holography of loudspeaker drive units, 220 July
IBA container station opens, 289 Aug.
IBC 1974 breaks new ground, 290 Aug. IEE establishes microprocessor group, 442 Nov. Inspec milestone, 442 Nov .

Light-ingered touch, 442 Nov.
Link scheme success for schools, 170 June London traffic control phase two, 441 Nov. Low light camera, 480 Dec .

Millimetre-wave radio, 373 Oct. Mobile recording for Island, 7 Mar .
Money identifier for the blind, 7 Mar.
Moscow TV for N. E. Siberia, 331 Sept.
Motorway menace reduced, 170 June
New record factory in Scandinavia, 331 Sept.
type of u.h.f. relay, 221 July
Oil rig communications, 374 Oct. Optical reader captures data, 71 Apr .

Pick-up in permanent magnets, 289 Aug. Picture telephone system, 116 May
Portable colour camera, 115 May Pro-Electron goes passive, 116 May

Quadraphonics news-UD-4 to be launched, 172 June
Quadraphony experimental broadcast, 171 June
Queen's Awards for 1974, 115 May
Quis custodiet, 480 Dec .
Radio love call stirs Darwin, 441 Nov.
Radiopaging market opens, 6 Mar .
Reformation for broadcasting, 6 Mar.
Roadside emergency Help Box, 7 Mar .
17% UK semiconductor growth predicted 40% for m.o.s circuits, 70 Apr.
Safety on the Tees, 171 June
Satellite launcher guidance, 172 Junc
Scotland goes stereo, 480 Dec .
Security for diamonds, 373 Oct.
Seminex week in Stockholm, 331 Sept.
Simple f.d.m. using comb filters, 374 Oct.
Sonex versus Hi-Fidelity ' $74,70 \mathrm{Apr}$.
Spare parts, 374 Oct.
Sputtering techniques improve, 329 Sept.
Static problem eliminated, 7 Mar.
Static problem eliminated, 7 Mar.
Stereo radio for Scotland, 170 June
Stereo radio for Scotland, 170 June
f.m. radio in Scotland, 481 Dec
Supercable, 374 Oct.
TV information service, 115 May
Teletext sales down, 331 Sept .
Teletext to go ahead, 441 Nov.
Television Society awards, 170 June
Universal telephone microcircuit, 70 Apr .
Water musie, 172 June

PROJECT

Digital clock and calendar, 3. F. K. Nosworthy \& N. J. Roffe, 231 July, 337 Sept., 491 Dec.
F.e.t. curve tracer, L. G. Cuthbert, 4 Mar., 101 Apr.

Radio astronomy as a school project, J. C. Codling, 139 May

Value of school projects, E. R. Laithwaite, 2 Mar.

REALM OF MICROWAVES

Basic measurements and instruments, 397 Oct.
Lenses and radomes, 151 May

RESEARCH NOTES

Better cryogenic power cables, 179 June Black holes and naked singularities?, 64 Apr.
Electron guns for rainmaking?, 179 June
Huge radio galaxies, 372 Oct.
Laser gas-leak detectors, 179 June superhets at work, 307 Aug.

Magnetism and the weather, 179 June Magncto-electric material, 372 Oct.

Neutron radiography, 64 Apr., Letters, 182 June New encapsulation for thick film circuits, 307 Aug.

Photoelectric leaf sensor, 179 June
Pocket laser, 372 Oct.
Primary cell, 307 Aug.

Radio spectrometry on the fringe of the universe, 307 Aug.
Sky-wave radar to track hurricanes?, 179 June Solid state optical recorder, 372 Oct .

Transistor absolute thermometers, 307 Aug.
Tuned reeds up to date, 372 Oct.
Ultrasonic tumour detection, 307 Aug .
Videophone aids disgruntled consumers, 179 June
Watching crickets' ears. 372 Oct.
Yoga and electronics versus stress disease, 64 Apr .

SPACE NEWS

Apollo-Soyuz test project, 287 Aug .
British satellite launch, 396 Oct.
Camera on Mars, 482 Dec.
Domestic satellite launch, 482 Dec.
Exploring the outer planets, 287 Aug.
Ion engine survives, 482 Dec .
More about Apollo-Soyuz, 396 Oct.
Spin-off, 288 Aug.
Supernova probe, 396 Oct.
Telemetry transmission, 482 Dec.
Understanding weather patterns, 288 Aug.

AUTHORS INDEX

Ainley, J. H., Harry, R. J. \& McLachlan, A. S., 191 June, 255 July
Amos, S. W., 451 Nov.
Anderton, W. E., 211 June
Arthur, F., 303 Aug.
Baker, W. J., 81 Apr.
Bauer, B. B., 27 Mar.
Bishop, A. \& Woodruff, A., 316 Sept., 382 Oct.
Butier, F., 325 Sept.
Carey, M. J. \& Sager, J. C., 422 Nov.
Carruthers, J., Evans, J. H., Kinsler, J. \& Williams, P. 45 Mar., 99 Apr., 130 May, 204 June, 308 Aug., 391 Oct., 508 Dec
"Cathode Ray", 253 July, 347 Sept., 393 Oct.
Codling, J. C., 139 May
Cowie, G., 8 Mar., 75 Apr., 143 May, Letters, 386 Oct.
Cuthbert, L. G., 4 Mar., 101 Apr.
Dann, G., 90 Apr., Letters, 180 June
Day, P.I., 350 sept.
Dinsdale, Heather Ann, 222 July
Dinsdale, J., 19 Mar., 133 May, 186 June, Letters, 180 June, 345 Sept.
Dwyer, J., 402 Oct.
Evans, B. T., 353 Sept.
Evans, J. H., Kinsler, J., Williams, P., \& Carruthers, J., 45 Mar., 99 Apr., 130 May, 204 June, 308 Aug., 391 Oct.. 508 Dee.

Fairs, R. A., 510 Dec.
Fitch, N. A. S., 322 Sept.
Ford, H. G., 175 June
Fowler, T. C. R. S., 283 Aug.
Freeman, K. G. \& Spencer, D. B., 39 Mar.
Gerzon, M., 483 Dec.
Harris. A., 499 Dec.
Harry, R. J., McLachlan, A. S., \& Ainley, J. H., 191 Junc, 255 July
Harwood, H. D., 51 Mar., 459 Nov.
Hills, M. T., 164 June, 241 July
Hosking, M. W., 151 May, 397 Oct.
Ilgner, R. A., \& Moghadam, A. A., 364 Oce.
Johnson, H. C., Shefer, J., Klensch, R. J., \& Kaplan, G., 117 May, 199 June
Jones, T., 299 Aug.
Jordan, B. D., 29 Mar.
Kaplan, G., Johnson, H. C., Shefer, J., \& Klensch, R. J., 117 May, 199 June
Kennedy, G. R., 435 Nov.. 487 Dec,
Kinsler, J., Williams, P., Carruthers, J., \& Evans, J. H., 45 Mar., 99 Apr., 130 May, 204 June, 308 Aug.. 391 Oct., 508 Dec.
Klensci, R. J., Kaplan, G., Johnson, H. C., \& Shefer, J., 117 May, 199 June
Knott, K. F. \& Unsworth, L., 375 Oct.
Laithwaite, E. R., 2 Mar.
Lane, B., 237 July, 449 Nov.
Langford, A. K., 455 Nov.
Lewis, R., 273 Aug.

Macario, R. C. V., 95 Apr.
McLachlan, A. S., Ainley, J. H. \& Harry, R. J., 191 June, 255 July
Meares, D. J., 335 Sept.
Moghadam, A. A. \& Ilgner, R. A., 364 Oct.
Moir, J., 65 Apr., Letters, 181 June, 386 Oct.
Nosworthy, J. F. K. \& Rolfe, N. J., 231 July, 337 Sept., 491 Dec .

Osborne, J. M., 44 Mar.
Penketh, J. R., I 10 May
Perryman, R. \& Stefani, I. L.. 505 Dec.
Pike, W. S., 224 July
Read, D. C., 443 Nov
Roddam, T., 156 May, Letters, 346 Sepl.
Roffe, N. J. \& Nosworthy, J. F. K., 231 July, 337 Sejr. 491 Dec.

Sager, J. C. \& Carey, M. J., 422 Nov.
Sandman, A. M., 367 Oct.
Scroggie, M. G., 291 Aug.
Searle, N. H., 203 June
Sexton, B., 31 Mar.
Shefer, J., Klensch, R. J., Kaplan, G. \& Johnson, H. C., 117 May, 199 June
Shelley, B. J., 235 July
Skingley, J. A., 173 June
Skingley, J. A. \& Thompson, N. C., 58 Apr., 124 May
Spencer, D. B. \& Freeman, K. G., 39 Mar.
Spencer, J. G., 266 Aug.
Starks-Field, A. B., 477 Dec.
Stefani, I. L. \& Perryman, R., 505 Dec.
Taylor, W. K. \& Witkowski, J. J., 332 Sept.
Thomas, M. V., 341 Sept.
Thompson, N. C. \& Skingley, J. A., 58 Apr., 124 May
Tong. D. A., 245 July, 293 Aug.
Unsworth, L. \& Knott, K. F., 375 Oct.
"Vector", 108 Apr., 264 July, 314 Aug., 470 Nov., 519 Dec.
Watkinson, J. R., 216 July
Wicker, R. G., 87 Apr.
Williams, E. W., 472 Dec.
Williams, P., Carruthers, J., Evans, J. H. \& Kinsler, J.. 45 Mar., 99 Apr., 130 May, 204 June, 308 Aug.. 391 Oct.. 508 Dec
Winn, R. F. E., 413 Oct.
Witkowski, J. J. \& Taylor, W. K., 332 Sept.
Woodruff, A. \& Bishop, A., 316 Sept., 382 Oct.

Bright $31 / 2$ digit 8 mm LED display.
Reading up to 1.999.
Dual slope integration.
Auto-polarity operation.
5 functions each with four ranges.
Internal battery.
Up to 60 hours operation.
The extruded aluminium case gives
excellent strength and screening from interference, and the circuitry, using MOS LSI for reliability,
is protected against severe overload.

Sinclair Multimeter DM2

£59

Please send literature
enclose cheque $£ 63.72$ (includes VAT
post and packing UK only) Please send DM2 by return post

D SUPPLIERS OF SEMI-CONDUCTORS TO THE WORLD

12 Watt

 stereo amp Only E10 ${ }^{45}$ \& p_{p} SPECIAL OFFER 6 watt music power each channel This excellent little amplifier is of the latest inte-grated circuit design, and will work into 48 or 16 ohm speakers. The reproduction is excellent for an amplifier of this size, only $8^{\prime \prime} \times 3 \frac{1}{2^{\prime \prime}} \times 2^{\prime \prime}$. The case is made of chromed metal.

Tested and Guaranteed Paks

879	4	1N4007 Sil. Rec. diodes. 1.000 PIV lamp plastic	
B81	10	Reed Switches $1^{\prime \prime}$ long $\frac{1^{\prime \prime}}{}$ dia. High speed P.O. type	50p
H35	100	Mixed Diodes, Germ. Gold bonded etc. Marked and Unmarked	
H38	30	Short lead Transistors. NPN Silicon Planar types	50p
41	2	Power Transistors Cornp. Pair BD 131/132	p
H63	4	2N3055 Type NPN Sil. power transistors. Below spec. devices	
H65	4	40361 Type NPN Sil. transistors TO-5 can comp, to H66	
H66	4	40362 Type PNP Sil, transistors TO-5 can comp. zo H65	
	8	egrated circuits DTL ed. Mixed Types. tes. Hex Inverters. el	

Ot Unmarked Untested Paks

81	50	Germanium Transistors PNP, AF and RF.	
B66	150	Germanium Diodes Min. glass type	p
88	100	Sii. Diodes sub. min. IN914 and IN916 types	50p
88	00	Yransistors, manufacturers. rejects, AF, RF, sil and germ.	P
H26	40	NPN Silicon Trans. 2N3707-11 range, low noise amp.	50
H34	15	Power Transistors, PNP, Germ. Silicon TO-3 Can, P \& P 5 p extra.	
H67	10	3819 N. Channel FET's plastic case type	50p
H68	10	Experimenters Pak of Integ Circuits data supplied DT TTL some marked	

Make a rev counter
for your car
The TACHO BLOCK. This encapsulated block will turn any $0-1 \mathrm{~mA}$ meter into a linaar and accura
for any car with nomal coil ignition system. f 1.00 each

Telephone dials

Standard Post office rype.
Guarantsed in working orda
ounk 25p ${ }_{1}^{16 p \text { peach }}{ }^{+ \text {PRP }}$

Electronic Transistor Ignition $£ 6.00$

Now in kit form, we offer this "up-to-the-minute" electronic ignition system. Simple to make, full instructions supplied. with these outstanding
features: transistor and conventional switchability. burglar-proof lock-up and automatic alarm, negative and positive compatibility.

New X-Hatch

Our new, vastly improved Mark Two Cross-Hatch Generator is now available. Essential for alignment of colour guns on all TV receivers. Fatturing plug-in ICs and a more sensitive sync. pickup circuit. The case is virtually unbreakable-ideal for the engineer's toolbox-and only measuras $3^{\prime \prime} \times 5 \frac{3}{\prime \prime}^{\prime \prime}$ \times

(includes P \& P, but no batteries)

We have just received al large consignment of LM380 ICs. These are specially selected to a higher grade and are marked with the number SL60745.
This fantastic little 3 watt audio IC only requires two with volume and tone control. The quality is good and has to be heard to be believed.
Our special price - a and projects book

Over 1,000,000 Transistors

in stock

We hold a very large range of fully marked, tested and guaranteed Transistors, Diodes and Rectifers at very
Our very popular $4 p$ Transistors TYPE "A" PNP Silicon alloy TO- 5 can TYPE "A"PNP Sicon alloy, FO-5 can.
TYPE "E" PNP Germanium AF or RF
TYPE ' F ' NPN Silicon plastic encapsulation TYPE "G" NPN Silicon, similar ZTX300 range

8 analas forf 1.00

 UHF TV Tuner Unitsfor 625 line channels 21 to 65 Brand new by a famous manufacturer
Data supplied $\mathbf{£ 2 . 5 0}$

Plastic Power Transistors

40 WAIT SILICON				
Type No.	Gain	VCE	Polaricy	Price
40N1	15	15	NPN	20p
40N2	40	40	NPN	30p
40P1	15	15	PNP	20p
40P2	40	40	PNP	30p
90 WATT SILICON				
GON1	15	15	NPN	25p
90N2	40	40	NPN	35p
90P1	15	15	PNP	25p
90P2	40	40	PNP	35p

LE.D's. Complete with mounting grommet
Le.D's. Complere w
Red 25p Green 40p
IMTEGRATED CIRCUITS
We stock a large range of I.Cs at very competitive prices. These are all listed in our FREE Catalogue, see coupon below.

METRICATION CHARTS Now available
This fantastically detailed conversion calculator carries thousands of classified references between metric and British land U.S.A.) measurements of length, area, voiume. liquid measure, weights etc.
Pocket Size 12p.
Wall Chart 18p.
LOW COST DUAL IN LINE I.C. SOCKETS
$\left.\begin{array}{l}14 \text { pin type at } 15 \text { peach } \\ 16 \text { pin type at } 17 \text { peach }\end{array}\right\}$ Now new low profile type.
sooks
Peference and Technical
Books in stock.
BUMPER BUNDLES
These parcels contain all types of surplus eiectronic components, printed panels, switches, potentiometers.
$\mathbf{2}$ LBS in weight for $\mathbf{£ 1 . 0 0}$
Post and Packíg 27 P.

Our famous P1 Pak

is still leading in value
Full of Short Lead Semicolductors \& Electronic Components, approx. 170 . We guarantee at least 30
really high quality factory marked Transistors PNP really high quality factory marked Transistors PNP
\& NPN and a host of Diodes \& Rectifiers mounted on Printed Circuit Panels. Identification Chart supplied to give some information on the Transistors.
Please ask for Pak P.1. only $5 \mathbf{0}_{\mathrm{p}}$

PLEASE ADD VAT AT CURRENT RATE.
Please send me the FREE Bi-Pre• Pak Catalogue
enclose a large SAE with 5p stamp.
NAME .

MINIMUM ORDER 500 CASH WITH ORDER PLEASE Add $15 p$ post and packing per order. OVERSEAS ADD
EXTRA FOR POSTAGE.
\qquad

G. F. MILWARD

ELECTRONIC COMPONENTS
 Wholesale/Retail:

CAIING ALL INDUSTRIAL BUYERS!!

[^10] unbeatable prices! This is YOUR chance to cut manufacturing costs and greatly increase profit margins!

	1/99	100/499	500/1000		1/99	100/499	500/1000		1/99	100/499	500/1000
7400	60.15	60.125	E0.10	7442	¢0.645	60.5375	¢0.43	7494	¢0.495	10.4125	10.33
7401	C0.15	E0. 125	¢0. 10	7443	¢1. 275	¢1.0625	£0.85	7495	60.63	¢0.525	¢0.42
7402	¢0. 15	¢0. 125	60.10	7415	¢0.855	¢0.7125	60.57	7496	¢0.72	¢0.60	40.48
7403	60.15	60.125	C0. 10	7446.	f1.05	£0.875	60.70	74104	± 0.315	¢0. 2625	80.21
7404	¢0.18	20.15	60. 12	7446A	¢.1.05	¢0. 875	¢0.70	74105	≤ 0.315	¢0.2625	E0.21
7405	¢0.18	¢0.15	E0. 12	7447	¢1.05	¢0.875	60.70	74107	60.315	60.2625	60.21
7406	60.375	60.3125	C0. 25	7447A	¢1.05	c0.875	¢0.70	74121	¢0.315	£0.2625	60.21
7407	¢0.375	¢0.3125	± 0.25	7448	\&0.855	¢0.7125	\&0.57	74122	80.45	80.375	E0.30
7408	10.15	c0. 125	50.10	7450	60.15	¢0. 125	E0. 10	74123	¢0.63	60.525	¢0.42
7409	¢0.15	¢0. 125	¢0. 10	7451	¢0. 15	E0. 125	60. 10	74141	60.75	60.625	E0. 50
7410	¢.015	60.125	\$0.10	7453	60.15	E0. 125	¢0.10	74151	¢0.69	± 0.575	80.46
7412	¢0.195	£0. 1625	60.13	7454	¢0. 15	20. 125	60. 10	74153	60.69	60.575	¢ $20 \cdot 46$
7413	60.345	¢0.2875	40.23	7460	60.15	20. 125	60.10	74155	¢0.69	60.575	¢0.46
7416	60.345	¢0. 2875	60.23	7472	60.255	60.2125	¢0.17	74156	60.69	¢0.575	40.46
7417	E0.345	¢0. 2875	60.23	7473	60.153	£0. 2625	60.21	74160	£1.005	¢0.8375	60.67
7420	¢0.15	60.125	60.10	7474	60.315	60.2625	60.21	74161	¢1.005	60.8375	60.67
7423	¢0.27	60.225	60.18	7475	¢0.465	¢0.3875	40.31	74162	¢1.005	60.8375	¢0.67
7425	60.27	60.225	50.18	7476	60.315	¢0. 2625	60.21	74163	f1.005	¢0.8375	60.67
7426	¢0.27	10.225	20.18	7480	60.435	60.3625	80.29	74166	61.425	61.1875	\$0.95
7427	¢0.27	¢0.225	80.18	7482	60.75	60.625	60.50	74174	E1. 20	¢1.00	40.80
7430	60. 15	¢0. 125	50.10	7483	60.825	60.6875	¢0.55	74175	60.975	¢0.8125	60.65
7432	¢0. 25	60.225	60.18	7485	¢1. 275	¢1. 0625	60.85	74192	¢1. 275	f1.0625	60.85
7437	60.27	£0.225	60.18	7486	60.315	¢0.2625	60.21	74193	¢1.275	¢1.0625	60.85
7438	¢0.27	¢0. 225	60.18	7490	60.465	60.3875	60.31	74198	62.10	¢1.75	¢1.40
7440	¢0. 15	80. 125	60. 10	7492	60.465	60.3875	¢0.31	74199	c2. 10	£1-75	¢1. 10
7441A	40.825	¢0.6875	60.55	7493	¢0.465	C0.3875	60.31				

To secure the above prices, all orders for these devices must exceed $\not 25$ in total value. Price rating is established by TOTAL NUMBER OF DEVICES ORDERED. Any mix may be made. For special quotations for large orders ring 021-327 2339 NOW I! !

HALF PRICE OFFER! LIMITED PERIOD ONLY!

KODAK RESIST COATED PRINTED CIRCUIT BOARD

$\begin{aligned} & \text { BOARD } \\ & \text { SIZE } \end{aligned}$	FIBRE GLASS												PAPER in"-1 oz	
									$\frac{1}{17}-102$					
	Single Sided		Double Sided		Single Sided		Double Sided		Single Sided		Double Sided		Singie Sided	
	Positive	Negative												
$75 \mathrm{~mm} \times 100 \mathrm{~mm}$	14p	12p	15p	13p	8p	8p	8p	8 p	16p	15p	14p	13p	8 p	8p
$100 \mathrm{~mm} \times 150 \mathrm{~mm}$	27p	24p	29p	26p	15p	14p	19p	15p	33p	30p	29p	26p	15p	14p
$150 \mathrm{~mm} \times 200 \mathrm{~mm}$	53p	48p	56p	$51 p$	30p	27p	37p	30p	66p	60p	60p	54p	30p	27p
$200 \mathrm{~mm} \times 250 \mathrm{~mm}$	88p	80p	92p	84p	51p	45p	63p	$51 p$	£1-10	£1.00	£1.02	92p	51p	45p
$250 \mathrm{~mm} \times 250 \mathrm{~mm}$	£1-10	£1.00	£1.15	f1.05	65p	55p	80p	65p	f1. 38	f1. 25	£1-30	£1-15	65p	55p
$12^{\prime \prime} \times 6^{\prime \prime}$	80p	70p	85p	75p	55p	45p	65p	55p	£1.00	90p	f1-10	£1.00	55p	45p
$12^{\prime \prime} \times 12^{\prime \prime}$	£1.60	£1.40	f1.65	f1.45	£1.05	85p	£1.25	£1.05	£1.95	£1.75	£2.10	f1.90	£1.05	85p

EXTRA DISCOUNTS!
ORDER 25 SHEETS OF ANY ONE TYPE-DEDUCT 20\% ORDER 100 SHEETS OF ANY ONE TYPE-DEDUCT 30%
IF ABOVE SIZES DO NOT MATCH YOUR REQUIREMENTS, ASK FOR QUOTE-CUT TO YOUR SIZE. this is an offer that you cannot afford to missi act nowl

REMEMBER!

ALL GOODS PLUS 8\% V.A.T.

JOHN CRICHTON
 Electronic Equipment

558 Kingston Road. London, SW20
Inland VAT add 8\% Prices shown include P \& P , ot page extra for overseas or Carriage exur formersent please. Phone 01-540 9534
TEST SET FREQUENCY RESPONSE CT381
Consisting of: sweep generator, indicator resporise curve, flat-faced tube long persistance. Power supply. Calibrator frequency CT432. Frequency range: 10kc/s-33Mic/s in nine directly calibrated ranges. Accuracy $\pm 3 \%$ tion: (nominall. $0-500 \mathrm{kc} / \mathrm{s}$ above- $4 \mathrm{Mc} / \mathrm{s}$ tion: nominal). $5 \mathrm{Me} / \mathrm{s}-4 \mathrm{kc} / \mathrm{Mc} / \mathrm{s}$. 0 above- $165 \mathrm{kc} / \mathrm{s} / \mathrm{s}$ at $600 \mathrm{kc} / \mathrm{s}-1.5 \mathrm{Mz} / \mathrm{s}$, faling to $3 \mathrm{kc} / \mathrm{s}$ at $10 \mathrm{kc} / \mathrm{s}$. Output impedance: 75 ohms resistive. Pawer supplies: Mains 100-120V and $180-250 \mathrm{~V}$, Frequency $50500 \mathrm{c} / \mathrm{s}$. Consumption 340 W (nominall. Price £195. Belling Lee radio frequancy interference filter type Y2005

HEWVETT PACIKARD 1858. 1GHz SAMP

OScilloscop
Horizontal Sweep speeds: 10 ranges, 10
nsec/om to $10 \mathrm{sec} / \mathrm{cm}$, accuracy within $\pm 5 \%$. Magnification: 7 calibrated ranges $\times 1, \times 2, \times 5, \times 10, \times 20$. X50 and $\times 100$. incresses maximum calibrated sweep
speed to 0.1 nsec/sm: with vernier maximum sweep speed is further extended to $0.04 \mathrm{nsec} / \mathrm{cm}$. Intensity and sampling inHigh frequency: Input frequency: 50 to 1000 mc for sweep speeds 200 mv and $1000 \mathrm{mv}: \pm 3 \%$. Time: Approximately 5 sec burst of 50 mc sinewave. Frequency accuracy $=2 \%$. In addition the Modai 1858 provides output signals for X-Y
recorders and provides means for conrecorders and provides means for con-
troliing the display either manually or externaliy. Full specification on request.
Price £295.
H30C Microwave power meter.
8709A Synchronizer
 8732A Pin Modulator 1.8-4.5 GC 8431A Bandpass filter 2-4GC. 797D Directional Coupler $1.94 .1 \mathrm{GHz} \mathbf{£ 4 0}$ 8436A Bandpass filter $8-12.4 \mathrm{GC}$. 1858 Samplin Selling

30047 CAMBRIDGE UNIVERSAL
BRIDGE.
Measures DC resistance, self-inductance Full specification on request. E95 Voltmeter Valve CT54 (Micovac). with mains power supply fpower supply no available separately). In strong metal case with full operating instructions. $2.4 \mathrm{~V}-480 \mathrm{~V}$ AC or DC in 6 ranges, 1 ohm to 10 Megohm in 5 ranges. Indicated on 4 in Scale
meter. Complete with probe. $\mathbf{£ 1 2 . 5 0}$ including p. and p. (Leads extra.)

TEKTRONIX

NON.PLUG-IN UNIT

oscilloscope.
$515 \mathrm{~A} . \mathrm{DC}-15 \mathrm{MHz}$. $£ 150$.
MAIN FRAME OSCILLOSCOPES:
$543 . \mathrm{DC}-30 \mathrm{MHz}$. 547 . $\mathrm{DC}-50 \mathrm{MHz}$. $545 . \mathrm{DC}-30 \mathrm{MHz} .545 \mathrm{~A} . \mathrm{DC}-30 \mathrm{MHz}$ 5458. DC-33MHz, 551, DC-27MHz

PLUG-IN UNITS.
Type $1 \mathrm{~A} 1.50 \mathrm{mV} / \mathrm{c}$
$20 \mathrm{~V} / \mathrm{cm} 5 \mathrm{mV} / \mathrm{cm}$.
$20 \mathrm{~V} / \mathrm{cm} 5 \mathrm{mV} / \mathrm{cm}$.
Type $1 \mathrm{~A} 2.50 \mathrm{mV} / \mathrm{cm}$ to Not avalable 20V/em.
Type B: $0.005 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm} \cdot 0.05 \mathrm{~V}$ cm to $20 \mathrm{~V} / \mathrm{cm}$
Type CA. $0.05 \mathrm{~V} / \mathrm{cm}$ to $20 \mathrm{~V} / \mathrm{cm}$.
Type D. $1 \mathrm{mV} / \mathrm{cm}$ to $50 \mathrm{~V} / \mathrm{cm}$. Type G Type L. $5 \mathrm{mV} / \mathrm{cm}$ to $2 \mathrm{~V} / \mathrm{cm}, 0.05 \mathrm{~V} / \mathrm{cm}$ ${ }^{10} 20 \mathrm{~V} / \mathrm{cm}$.
Type M. $0.02 \mathrm{~V} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$
230 DIGITAL UNIT
Digital readout parameters. Pulse amplitude. puise ristime and falltime, pulse width, time interval.

PULSE GENERATOR

PULTSE GE with Delay

PASSIVE PROBE P6006 with 10 X attenuation, designed for oscilloscopes hoving an input resistance of 1 megohmi and input capacitance of up to 55pf. Price E10.
PROBE
PROBE PGOB5 10X. 10 magohm. 12.5 pf. 500 V D.C. max. Length 6 tr.
muirhead frequency analyser TYPE D-669-B.
requency range $300 / \mathrm{s}-30 \mathrm{k} / \mathrm{s}$. Accuracy
bettar than 1.5%. Input voltage $300 \mathrm{uV}-100 \mathrm{~V}$ for full scale deflexion. Smallest indication 15 MV . Maximum input voltage 300 V r.m.s. Price £95. Full spec, on request.
MUIRHEAD 2-PH, L.F. DECADE MUIBHEAD 2.PH. L.F. D.
OSCILLATOR TYPe D880.

OSCILLATOR Type	
Frequency	
range	0.0160

 V.L.F. $0.01 \mathrm{c} / \mathrm{s}-0.1 \mathrm{~d} / \mathrm{s}$ in steps of $0.01 \mathrm{c} / \mathrm{s}$. Aanges $\times 1, \times 10, \times 100 \pm 0,05 \%$ After
 req. range: 10 MHz to 485 MHz . Built-in erpstal caliibrator. Internal and external sine a.m. External puise modulation. Calibration Accuracy: Using erystal calibrator, within $\pm 0.2 \%$ over entire frequency range. R.F. ous OA. 1094 A/3 H.F. SPECTRUMANALYSER with LF extenslon unit type TM5448. Freq. range: 100 Hz to 30 MHz . Measures relative amplitudas up to 60 dB . Spectrum width 0.30 KHz . Sweep duration: $0.1,0.3,1$. 3. 10.30 sec , and manual. Full spec on request. $\mathbf{6 6 9 5}$.
$0 \mathrm{~A} .1094 \mathrm{~A} / \mathrm{S}$
OA. 1094A/S H.F. SPECTRUM ANALYSER. Freq. range: 3 MHz to 30 MHz in nine $\begin{aligned} & \text { steps, spectrum width } 0 \text { to } 30 \mathrm{KHz} \text { Sweep } \\ & \text { distortion: } \\ & 0.1 \\ & 0.3\end{aligned}, 3$, distortion: 0.1. $0.3,1,3,10,30 \mathrm{secs}$ and T. 111 HOBAND TRANSISTORIZED T. 111 ROPFLY MAN TRANSISTOFIZED $0-50 \mathrm{~V}$ ot 5 Amperes cont. variable, overload cut-out. E49.

REMSCOPE SO1/740 STORAGE

 OSCILLOSCOPE.Fluorescence: Yellow, resolution: 40 lines/em E.H.T.: BkV. display time: 10 mins-1 hr approx., storage time: 1 week approx. $\mathbf{£ 1 2 8}$ CD 1212 WIDE-BAND GENERAL
PURPOSE OSCILLOSCOPE.
Employing plug-in pre-amplifiers for single or dual trace displays.
DC $-40 \mathrm{Mc} / \mathrm{s}$ (-3 dB (18 d$) \cdot 2.5 \mathrm{c} / \mathrm{s}-40 \mathrm{Mc}$. $A C$ coupled $(-3 \mathrm{~dB} \pm 1 \mathrm{~dB})$. Rise time 8 nanosec approx. Sersitivity: $50 \mathrm{mV} / \mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with tine gain control. Dual trace pre-amplifier CX 1252. Bandwidth. $\mathrm{OC}-24 \mathrm{Mc} / \mathrm{s}: 3 \mathrm{~dB} \pm \mathrm{IdB} / \mathrm{AC}$ coupled. Rise time: 14 nanosec approx. Sensitivity: $50 \mathrm{mV} /$ $\mathrm{cm}-50 \mathrm{~V} / \mathrm{cm}$ in nine calibrated ranges with
fine gain control. Full spacification on fine gain con
request. $\mathbf{E 1 2 8}$.
T.F.8018/3/S A.M. SIGNAL GENERATOR. Frea. range: 12 MHz to 485 MHz in five bands Built-in crystal calibrator. Full spec. on request $£ 220$.
CT. 373 TEST SET. Oscillator: $17 \mathrm{o} / \mathrm{s}-$ $170 \mathrm{kc} / \mathrm{s} \quad \pm 1 \%, \quad \pm 1 \mathrm{c} / \mathrm{s}$ at ambient temp. $0^{\circ} \mathrm{C}-45^{\circ} \mathrm{C}$. Distortion Mater: Freq, range
$20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{kc} / \mathrm{s}$, distortion range: $10 \%, 30 \%$ $20 \mathrm{c} / \mathrm{s}$ to $20 \mathrm{~kg} / \mathrm{s}$. distortion range: $10 \%, 30 \%$ approx. 500 mV to 130 V hasic range, 250 mV to 1300 V extreme limits. Fuil spec. on request. $£ 98$.
AVO MODEL 3 VALVE TESTER. Enables comprehensive characteristics to be piotted basis. $\mathbf{E} 55$.
AVO CT 180 VALVE TESTER. As above but in portable valise form, $\mathbf{£ 6 5}$.

TINSLEY TYPE 4363E AUTO VERNIER POTENTIOMETER.
PYE Pracision vernier potentiometer 7568 1 VV to 7.90100 V in two ranges. Accuracy 0.002%.
DIE-CUT FOIL STRAIN GAUGES BY DENTONICS TYPE M234C13L Resistance in ohms $350 \pm .5$. Gauge factor $2.13-1 \%$.
Max Temp $350^{\circ} \mathrm{F}\left(173^{\circ} \mathrm{C}\right)$. Price $£ 2$ per packet (5).
TF. 937 F.M./A.M. SIGNAL GENERATOR. Freq. range 85 KHz to 30 MHz . The carrier freq. can be standiardized against a built-in with miniature loudspeaker as an aural beat wetector, ع87.
TF. $114 \mathrm{H} / \mathrm{S}$ SIGNAL GENERATOR. FRE quency range: 10 KHz 72 MHz . Stability 0.002%. High discrimination, plus crysta calibrator. Good r.f. Waveform at all ire
quencies. Protected thermacouple leval moni. tor. Full spec. on request. $\mathbf{£ 2 2 0}$.
TEST SET DEVIATION FM No 2. The carrier frequency range extends from $2.5 \mathrm{Mc} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ and from $20 \mathrm{Mc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$ in a
total of eight bands: the deviation ranges are tota $5 \mathrm{kc} / \mathrm{s}, 0$ to $25 \mathrm{kc} / \mathrm{s}$ and 0 to $75 \mathrm{kc} / \mathrm{s}$. E48.

samos
 miniature cases
 in easy-to-work blue and white PVC/steel. Assemble in the lower half; complete before springing cover into before springing cover into place-four pozidrives, two to hinge it, two to fasten it. Carries four P.C. boards Carries four P.C. boards tically: four required for each case (for one vertical board, two each casel Prices correct Nov. 74
 four feet and four plated screws. Special feet to carry Printed Circuit Boards sold separately. Price, incl. 8\% VAT. 25p for four PC feet.

is an engineer's carrying case with a unique "do-it-yourself" foam susponsion system to carrydelicate equipment safely "Royalite" in moulded with a strong Royalite and with a strong types cover most presentation, display and service applications.

Type 1. Pre-cut $\frac{3^{\prime \prime}}{4}$ sq. foam in base and pocket for
manuals, etc. in lid. $5^{\prime \prime} \times 12^{\prime \prime} \times 16^{\prime \prime} £ 10.96$. Type 2. A and B. Red faced foam in base and lid. centre area of which is pre-cut at $\frac{3^{\prime \prime}}{4}$ intervals. Size area of which is pre-cut at $6^{\prime \prime} \times 12^{\prime \prime} \times 16^{\prime \prime} £ 11.17$. Size $\mathrm{B}: 6^{\prime \prime} \times 13^{\prime \prime} \times 19^{\prime \prime}$ f11.98.
Type 3. Uncut foam in base and egg crate foam in lid, which grips shallower objects (PC boards eggs, etc.) $4^{\prime \prime} \times 12^{\prime \prime} \times 16^{\prime \prime}$ £11.17.
Less for quantities. Prices include P. \&. P. and

R

BRADRAD

DRILLING AND
TOOL
BRADRAD DRILLING \& DEBURRING 00 L equals eleven drills. One cu drills and deburrs the norma un of steels, aluminium, brass copper and all types of plastics perspex, fibreglass, etc.. and hardboard. Should the need arise t is designed to overcome all the probiems associated with drilling thin materials-it drilis
$\frac{1^{\prime \prime}}{4}-2 \frac{1}{2} \frac{1}{2}^{\prime \prime}$ in $\frac{1}{8}$ " steps or 6-36mm in 3 mm steps. Both with $\frac{4^{\prime \prime}}{\frac{1}{n}^{\prime \prime}}$
shanks $£ 10.56$. Also $1 \frac{1^{\prime \prime}}{2^{\prime \prime}}-2 \frac{t^{\prime \prime}}{\prime 2}$ shanks $£ 10.56$. Also
All prices include P. \& P. and

3 3 " $£ 1.16$

$\frac{3}{3}$ or $7_{8}^{\prime \prime} \mathbf{E 1 . 4 4} \quad$ ADEL Adel cuts holes of $3^{3 /}$ or ${ }^{7 \prime} \mathbf{~ £ 1 . 4 4 ~ T h e ~ A d e l ~ c u t s ~ h o l e s ~ o f ~}$ tarting from a shape hole, cuting clean like a punchand die. deel for notching clearances on flin ges of cabinets or
chassis. .66 .64 .

1 $1 /$ ITHI VENTILATED CEASEL

AMTRON VEHTLLATED

METAL CASES
A lightweight case with perforated sides and top. The front panel is of heavy-gauge anodised ali. The top. secured by screws. The front frame, secured by screws. The front frame is a moulding. Prices include feet,解

CONTIL M(DIDOO

The design of these cases permits the instrument to be built or serviced within their external panels, 48 shapes. Low cost. Biue PVC/steel with white PVC-coated aluminium panels.
\qquad

E4.7 $\mathbf{£ 4 . 7 7}$
$\mathbf{f 5 . 8 4}$
$£ 7.41$ E7..41
f5.84
57.41
 $£ 9.06$
$\mathbf{£} 10.98$ $£ 10.98$
E9.06 £9.06
$\mathbf{f 1 0 . 9 8}$
$\mathbf{f} 13.12$ £13.1
 Prices correct
Nov, 1974.

WEST HYDE DEVELOPMENTS LId, Fyefield Cres., Northwood Hilts, Narthwood, Middx HAG 1 NN
Tel: Northwood $24941 / 26732$ WRITE OR PHONE FDR NEW FREE CATALOGUE Telex: 923231 WW-034 FOR FURTHER DETAILS

BUILD THIS EXCITING PROJECT AN AUDIO ANALYZER IN LESS THAN 2 HOURS ONLY £27 p.p. 75p.
 YOU CAN BE EXAMINING GENERATORS, FILTERS. ETC., ON YOUR GENERAL PURPOSE OSCILLOSCOPE.
 SENSITIVITY 100 MV . FREQUENCY RANGE 100 HZ to 50 KHZ . REQUIRES 24V DC 150 MA POWER SUPPLY.
 COMPRISES OF: FHACHI VCO FX11; RAMP FX21; FILTER FX31; A FIBRE GLASS PC BOARD ALREADY DRILLED FOR MOUNTING ALL NECESSARY COMPONENTS.

FREE On all orders received before December 31st 1974 all additional components you need (excluding P.U.) to complete the PROJECT. This device is not cased or calibrated.

FHACHI VCO MODULE FX11

Size $2 \times 1 \frac{1}{8} \times \frac{5}{8}{ }^{\prime \prime} \mathrm{H}$. Input 12 V to 24 V DC (not centre tapped) 18 V input giving 10 V constant amplitude output. Requires only a 1 meg ohm potentiometer to tune entire range-or can be swept with a saw tooth input. Enormous possibilities: music; synthesizers; filters; communications: frequency modulation, etc. Detailed application sheet with all purchases. Price $\mathbf{E 5} .75$ P. \& P. 15p.

FHACHI RAMP MODULE FX21

24 Volt DC input for 18 volt saw tooth output. Requires only external capacitor and 100 K ohm potentiometer to control frequency range up to 100 KHZ (eg 50 mfd electrolytic gives sweep of approx 1 cm per second). In or out sync capability. Price $£ 5.75$. P. \& P. 15p.

MARCONI TF 1041B Vacuum Tubs FREE WIT Voltmeter $£ 35$ ea.
MARCONI TF428C Valve voltmeter 100 mV to $150 \mathrm{~V} \mathrm{AC}: 20 \mathrm{~Hz}$ to 150 MHZ : DC 40 mV to 300 V E8 ea.
MARCONI TF899 Valve Millivolt meter. 20 mV to 2 V AC; 50 Hz to 100 mHz detected output for modulation monitoring. $£ 7$ ea.
MARCONI TF912A Power Meter 5 to 25 Watts.
Freq. range 80 to $160 \mathrm{mHz}, \mp 20$.
MARCONI TF801A/1 Signal Generator 10 to 310 mHz £55 ea.
MARCONI TF91D/3R Carrier Deviation Meter $\mathbf{£ 1 0 0}$.
MARCONI TF791B Carrier Deviation Meter £ 30 .
MARCONI TF34/2 FM Deviation Meter $£ 40$.
MARCONI TF142E Distortion Meter $£ \mathbf{2} 0$.
MARCONI TFB86A Q Meter $\mathbf{f 1 5}$.
MARCONI TF142F Distortion Factor Meter f 35 .
MARCONI TF791C Carrier Deviation Meter $f 65$.
MARCONI TF455E Wave Analyzer $\mathbf{£ 6 0}$.
MARCONI TF868B Universal Bridge $\mathbf{£ 9 5}$.
MARCONI TF995A/5 AM/FM Generator $£ 295$.
MARCONI TF1020A RF Power Meter 150 and 300 Watts. As new. $£ 90$ ea.
MARCONI TF1020A RF Power Meter 50 and 100 Watts. As new. $£ 65$ ea.
MARCONI TF1094A/S. HF Spectrum Analyzer. Late model $£ 375$.
MARCONI TF1371 Wideband Millivolt meter $f 25$.
MARCONI TF1434/2 Counter Range extension unit $10-100 \mathrm{mHz} £ 30$.
MARCONI TF1102 Amplitude Modulator Carrier inputs up to $500 \mathrm{mHz} £ 20$.
MARCONI TF1073 Variable attenuator 0 to 100 dB in 1 dB steps. 75 ohm DC to $150 \mathrm{mHz} \mathbf{£ 1 0} \mathbf{0}$ ea. AVO TRANSISTOR ANALYZER CT446. £35. UNITED SYSTEM CORPORATION Digital Voltmeter. Digitec. 100 mV full scale. Small compact transistorized unit. 240 V mains. 4 digit. $£ 15 \mathrm{ea}$. KELVIN \& HUGHES Single Channel Recorders with spare paper. $£ \mathbf{2} \mathbf{0}$ ea.
WAYNE KERR VHF Admittance Bridge B801 £15; B901 $£ 20$.
WAYNE KEAR Bridge Detector R161. $\mathbf{£ 3 0}$.

FREE WITH EVERY
PAIR PURCHASED
OPERATIONALAMP TYPE 709

COMPLIMENTARY POWER TRANSISTORS

EACH RATED AT 160 WATTS. £2.50 pr. pair. P \& P 10p.

2N5879 AND
2N5881

Hewlett Packard Microwave Power Meter 430 C complete with Bolometer $£ 45$.
Hewlett Packard Power Meter 431B £85. Hewlett Packard Valve voltmeter $19^{\prime \prime}$ rack AC or DC 1 mV to 300 V dB scale. $£ 20$.
AIRMEC OHM METER $861 \mathbf{f 2 5}$.
EMI WM8 Oscilloscope Plug-in units. New $\mathbf{f 2 5}$. WM16 Plug-in units type $7 / 1$ Single Trace 40 $\mathrm{mHz} £ 20 ; 7 / 2$ Dual Trace $24 \mathrm{mHz} £ 35 ; 7 / 6$ High Gain Differential $\mathbf{f 3 0}$.
DAWE $10 \mathrm{mc} / \mathrm{s}$ Digital Frequency Meter. As new. $\mathbf{E 2 5}$.
DAWE Digital Voltmeter type 652A. 4 digit up to 1000 V DC EPO^{0}.
DAWE Digital Printer type 3094A as new $£ 40$. ea. E.H. Pulse Generator Model 12320 mHz 20 nansecs width. $\mathbf{£ 6 0}$.
GRESHAM LION Waveform Generator 625 line staircase $\mathbf{£ 4 5}$.
GRESHAM LION Composite Waveform Generator Multi standard Sync/Square/Pulse/Bar. $\mathbf{£ 4 5}$. WESTON THERMOPROBE -60 to +100 degree Centigrade. £100.
WANDEL \& GOLTERMANN Distortion Meter VZM1 For differential gain and differential phase distortion of the colour subcarrier $£ 120$.
WANDEL \& GOLTERMANN TFEK41. Level meter $4-600 \mathrm{kHz} £ 70$.
MUIRHEAD D880A 2 Phase LF Oscillator $\mathbf{£ 3 5}$. MUIRHEAD D890A Decade Oscillator $£ 45$. PHILIPS GM6020 AC/DC Valve Voltmeter 0.1 mV to 1000 V . $\mathbf{£ 2 5}$.

PHILIPS GM6014 AC Valve voltmeter 1000 Hz to $30 \mathrm{mHz} £ 30$.
PHILIPS GM6012 Valve voltmeter 1 mV to $300 \mathrm{~V}: 2 \mathrm{~Hz}$ to 1 mHz . $£ 20$.
SINGLE SIDE BAND CONVERTOR CV157/ URR. $19^{\prime \prime}$ rack mount for use with Collins 390 Receiver. Complete with box of spares $\mathbf{£ 1 2 0}$ ea. HEADWAY RESEARCH Photoresist Spinner and Speed Control $£ 100$.
DUAL TRACE PLUG-IN units for CD1212 Scopes DC- $24 \mathrm{mHz} £ 35$ ea.

TELEPHONES

STANDARD 300

Series. BLACK
only $£ \mathbf{£ 1 . 0 0}$ ea.
P\& P50p.

MODERN STYLE 706

BLACK OR TWO-TONE GREY $£ \mathbf{3 . 7 5}$ ea. P \& P 35p.

STYLE 7006q

TWO-TONE GREEN $£ 3.75$ ea. P \& P 35p

HANDSETS-complete with 2 insets
and lead 75p ea. P \& P 37p.

DIALS ONLY.
75p ea. P \& P 25p.

SCOOP FIRST TIME

MODERN STANDARD TELEPHONES IN GREY OR GREEN
WITH A PLACE TO PUT YOUR FINGERS LIKE THE 746.
A CHANCE NOT TO BE MISSED
£3.00 ea. P\& P 35p.

RACAL RA17 assemblies with film scale $\mathbf{f 6 0}$ ea. INFRA RED INDUSTRIES USA Tunable Microvolt meter type $601 £ 75$.
TELONIC SWEEP GENERATOR $100-250 \mathrm{mHz}$ 4 Watts output $\mathbf{£ 1 3 0}$.
PROSSER SCIENTIFIC INSTRUMENTS Model A100 Waveform Generator Multi waveforms $£ 185$.
POLARAD Spectrum Analyzer TSA 10 mHz to $44 \mathrm{gHz} \ddagger 325$.
FENLOW LOW FREQUENCY ANALYZER type SA2 with recorder $\mathbf{£ 1 7 5}$.
ROHDE \& SCHWARZ UHF Slotted Line Type LMD $300-3000 \mathrm{mHz} £ 45$.
ROHDE \& SCHWARZ Field Strength Meter BN15031. $90-470 \mathrm{mHz} \mathbf{£ 6 0}$.
ROHDE \& SCHWNARZ VHF Test Receiver 280950 mHz USVD-BN1523 $\mathbf{£ 1 2 0 .}$
ROHDE \& SCHWARZ Admittance Meter VLUK-BN3511. As new $\mathbf{£ 1 7 5}$.
EDDYSTONE RECEIVER 770A E140.
GRANDENBURG Power Unit SO530/8. 10KV £40.
BRANDENBURG Power Unit S0530/10 20KV £70.
AIRMEC Modulation Meter type $210 £ 75$.
FREQUENCY METERS TS $17420-250 \mathrm{mHz}$ £30; TS175 $85-1000 \mathrm{mHz} £ 35$.
SOLARTRON Transistor P.U. type AS758.2 SOLARTRON Transistor P.U. typ
$0-30 \mathrm{~V}$ in 0.1 V steps $0-10$ amps $£ 30$.
SOLARTRON Precision AC Millivoltmeter VF252, 1.5 mV full scale $\mathbf{E 3 0}$.
SOLARTRON Resolved Component Indicator VP250. $20 \mathrm{c} / \mathrm{s}-20 \mathrm{kc} / \mathrm{s} . £ 30$.
SOLARTRON Multi purpose stab P.U. type 1904. Standard mains input. Outputs: +250 V DC 200MA +18 V DC $2 \mathrm{~A} ;+6 \mathrm{~V}$ DC $8 \mathrm{~A}:-3.5 \mathrm{~V}$ DC 100MA: -6 V DC $8 \mathrm{~A}:-18 \mathrm{~V}$ DC $4 \mathrm{~A} ; 25 \mathrm{~V}$ AC 150MA. All DC lines will withstand short circuits to earth. With copy of manual £35 ea.
AMERICAN GENERATOR TYPE TRM3. AM/FM Sweep $15-400 \mathrm{mHz}$. Built in display. markers etc. Full info on request. Brand new. markers
TEKTRONIX Pulse Generator type $161 \mathbf{£ 1 0}$. TEKTRONIX Pulse Generator type $163 \mathbf{£ 1 0}$. TEKTRONIX Power Unit type 160A E10. Large range MODULAR P.U. Various voltages etc. S.A.E. for lists.
TEKTRONIX Oscilloscope type 536 with T plug-in £285.
TEKTRONIX Oscilloscope type 647 with 10A2 and 11B2 plug-ins $£ 525$.
TEKTRONIX Oscilloscope type 545A Main Frame only Fine condition $\mathbf{E 1 6 5}$.

HIGH VALUE-
 PRINTED BOARD PACK

Hundreds of components, transistors, etc.-no two boatds the same-no short-leaded transistor computer boards. $£ 1.75$ post paid.

EX-BEA VISUAL DISPLAY UNITS

7" ELECTROSTATIC TUBE

 $11 \times 8 \mathrm{~cm}$ VIEWING AREA
MANUFACTURED IN THE USA BY BUNKER-RAMO STANDARD 240 V 50 HZ MAINS INPUT

These units are inspected to see that no parts are missing. No circuit diagrams or information is available. We are in the process of obtaining circuits, information, etc, and a copy will be forwarded to all purchasers at the earliest possible time.

Therefore these units are sold as received at $£ \mathbf{3 0}$ each.

GRATICULES. 12 cm , by 14 cm . in High
Quality plastic. 15 p each, P. \& $P .5 \mathrm{p}$.
PANEL mounting lamp, holders. Red or green, 9p ea. Miniature. PANEL mounting lamp with
holders- 10 V 15 MA 丂p ea.

BECKMAN MULTITURN DIAL
Model RB. Brand new.
f1.90.P. \& P. 10p.

FIBRE GLASS PRINTED CIRCUIT BOARD. Brand New. Single or Double sided.
Any size $1 \frac{1}{2}$ p per sq. in. Postage 10 p per order.
LIGHT EMITTING DIODES (Red) from Hewlett-Packard. Brand New. 38p ea.
Information 5p. Holders 1p.

METERS. Ernest Turner Model 402. 100 meTERS. Ernest furner Model 402 . 100
mence amps. BRAND NEW. Lousy scale-
hence 2.25 ea. P. \&.P. 25 p.
METERS by SIFAM type M 42, 25-0-25 micro amp. Scaled $25-0-25$ green; 250-0VISCONOL EHT CAPACITORS 0.05 mfd 2.5 kv 50 peca .0 .01 mfd 5 kv 40 pea.
0.05 mfd
8 kv 50 pea . 0.01 mfd 10 kv 50 pea . BLOCK PAPER CAPACITORS AVAILABLE. S.A.E. with requirements.
PHOTOCELL equivalent OCP 71. 13p ea. MULLARD OCP70 10p ea.

COLVERN 3 WOTENTIOMETERS
CoLVERN W Wr. B
MORGANITE Special Brand new. 2.5: 10 100: 250: 500K: 1 in . sealed. 17p ea.
BERCO $2 \frac{1}{2}$ Watt. Brand new, $5: 10: 50: 250$
ohms: $1: 25: 10: 25$ 日t 15 p ez. ohms: $1: 2.5: 10: 25$ at 15p ez

STANDARD 2 meg. log pots. Current type 15pea.

INSTRUMENT 3 in . Colvern 5 ohm 35p ea.,
5OK and 1OOK 30 p es. 50 K and 100 K 80 pes .
BOURNS TRIMPOT POTENTIOMETERS. 20; 50: 100:200:500 ohms; 1:2:2.5:5:10: 20: 50; 100: $200: 500$ ohms:
25 K at 35 pea . ALL BRAND NEW.
RELIANCE P.C.B. mounting, $270 ; 470$
500 ohms: 10 K at 35 p ea. ALL BRAND NEW.
VENNER Hour Meters- 5 digit, wall mount VENNER Hour Meters-5 digit, wall mount
P. \& Paled case. Standard mains. $£ 3.75$ ea. P. \& P. 45 p.

TRANSFORMERS. All standard inputs.
Gard/Parm/Part. $450-400-0-400-450.180$ Gard/Parm/Part. $450-1 \times 6.3 \mathrm{v} . \mathrm{Ea}$.

```
FANTASTIC VALUE
Miniature Transformer. Standard 240V
input. 3Volt 1 amp output. Brand New
input. 3v. P. & P. 15p. Discount for
qup ea,
```

CAPACITOR PACK 50 Brand new compo nents only $\mathbf{8 0 p}$. P. \& P. 17p.
P.C. MOUNT SKELETON PRE-SETS Screwdriver adjust 10.5 and 2.5 M @ $2 p$ es $1 \mathrm{M} .500,250$ and 26 K a $\omega \mathrm{p}$ ea. Finger ad.
iust 10,5 and $2.5 \mathrm{M} @ 3$ pea. 1 M .500 .250 just 20.5 and $2.5 \mathrm{Mi} @ 3$ e ea. 1MM.
1000p1 FEED THRU CAPACITORS. Only sold in packs of $10-30 \mathrm{p}, \mathrm{P}, \& \mathrm{P}, 10 \mathrm{p}$.
RECTANGULAR INSTRUMENT FANS, RECTANGULAR
American Ex-equ. Size 4. $\times 4 \times 4 \times 1 \frac{1}{2} \times 115$
Volt. Very quiet 43 ea. P. \& P. 37 p .

DELIVERED TO YOUR DOOR 1 cwt. of Electronic Scrap chassis, boards. etc. No Rubbish. FOR ONLY E4. N. Ireland $£ 2$ extra. P.c.e. PACK S \& D. Quantity 2 sq. ft.-no tiny pieces. 50p plus P. \& P. 20 p .
FIBRE GLASS as above $\mathbf{E 1}$ plus P. \& P. 20p.
TRIMMER PACK, 2 Twin 50/200'pf ceramic 2 Twin $10 / 60$ pf ceramic: 2 min strips with 4
preset $5 / 20$ pf on each: 3 air spaced prese preset $5 / 20$ pf on each: 3 air spaced preset
$30 / 100$ pt on ceramic base. ALL BRAND NEW $30 / 100$ pf on ceramic bas
$\mathbf{2 5 p}$ the LOT. P. \& P. 10 p.

ALMA precision resistors $200 \mathrm{~K}: 400 \mathrm{~K} ; 497 \mathrm{~K}$; 998K: 0.1\% 27p es.: $3.25 \mathrm{~K}, 5 \cdot 6 \mathrm{~K}, 13 \mathrm{~K}-0.1$ 20p ea.

RELAYS
Varley VP4 plastic covers 4 pole do 15 K -
$33 \mathrm{p}: 5-8 \mathrm{~K}-40 \mathrm{p}$ ea.

> BRAND-NEW 12in LONG PERSISTENCE TUBES New stocks-new price. Only £6-50 deal for SSTV: educationsal purposes Type 12DP7A, connections, voltages etc
Price includes carriage \& VAT.

arge quantity LT, HT, EHT transformers and chokes.

Vast quantity of good quality components 3 LB. of ELECTRONIC GOODIES for $\mathrm{f} 1 \cdot 50$ post paid.
CRYSTALS. Colour 4.43 MHz . Brand New £1-25 ea. P. \& P. 10 p.
Beehive Trimmer $3 / 30 \mathrm{pf}$. Brand new. Qty 1-9 13p ea, P. \& P. 15 p; $10-99$ 10p ea, P. \& P. 25p; 100-999 7pea, P. \& P.fres.

HF Crystal Drive Unit. 19in. rack mount Standard 240 V input with superb crystal oven by Labgear (no crystals) £5 ea. Carr. £1-50. ROTARY SWITCH PACK-6 Brand New witches (1 ceramic: 1-4 pole 2 way etc.).
CONSTANT VOLTAGE
TRANSFORMERS
I Kilowatt etc.
S.A.E. with requirements.

LOW FREQUENCY WOBBULATOR

Primarily intended for the alignment of AM Radios; Communication Receivers; Filters, etc., in the range of 250 KHZ to 5 MHZ , but can be effectively used to 30 MHZ . Can be used with any general purpose oscilloscope. Requires 12 VAC input. Three controlsRF level; sweep width and frequency. Price $£ \mathbf{£ - 5 0}$. P. \& P. 35p.
A second model is available as above but which allows the range to be extended down in frequency to 20 KHZ by the addition of external capacitors. Price $\mathbf{£ 1 1 - 5 0 . ~ P . ~ \& ~ P . ~ 3 5 p . ~}$
Both models are supplied connected for automatic 50 HZ sweeping. An external sweep voltage can be used instead. These units are encapsulated for additional reliability, with the exception of the controls (not cased, not calibrated).

DON'T FORGET
 YOUR MANUALS
 S.A.E. WITH REQUIREMENTS

MAKE YOUR SINGLE BEAM SCOPE INTO A DOUBLE WITH OUR NEW LOW PRICED SOLID STATE SWITCH. 2 HZ to 8 MHZ . Hook up a 9 volt battery and connect to your scope and have two traces for ONLY $£ 6$-25. P. \& P. 25p.
STILL AVAILABLE our 20 MHZ version at $£ 9.75$. P. \& P. 25p.

20HZ to 200 KHZ
 SINE AND SQUARE WAVE GENERATOR

in four ranges. Wien bridge oscillator thermistor stabilised. Separate independent sine and square wave amplitude controls. $3 \mathrm{~V} \max \sin e$, 6 V max square outputs. Completely assembled P.C. Board, ready to use. 9 to 12 V supply required. $\mathbf{£ 8 . 8 5}$ each. P. \& P. 25 p. Sine Wave only £6.85 each. P. \& P. 25 p.

LARGE QUANTITY OF OSCILLOSCOPE \& DISPLAY TUBES FROM $\mathbf{1}^{\prime \prime}$ to $\mathbf{2 4 "}^{\prime \prime}$ S.A.E. FOR COMPREHENSIVE LIST

All of our tubes can be supplied with nu-metal shields or Telcon nu-metal tape.

WIDE RANGE WOBBULATOR

5 MHZ to 150 MHZ (Useful harmonics up to 1.5 GHZ) up to 15 MHZ sweep width. Only 3 controls, preset RF level, sweep width and frequency. Ideal for 10.7 or TV IF alignment, filters, receivers. Can be used with any general purpose scope. Full instructions supplied. Connect 6.3 V AC and use within minutes of receiving. All this for only $\mathbf{£ 6}$-75. P. \& P. 25p. (Not cased, not calibrated.)

TYPE A
Input: $12 \mathrm{~V} D C$ Output: 1.3 kV AC 1.5 MA

Price $£ \mathbf{£ . 4 5}$

TRANSISTOR INVERTORS

TYPE B
Input: 12 V DC Output: 1.3 kV DC 1.5 MA Price $\mathbf{£ 4 . 7 0}$

TYPE C
Input: 12 V to 24 V DC
Output: 1.5 kV to 4 kV AC 0.5 MA
Price $£ 8.35$
Postage \& Packing 36p

TYPE D
Input: 12 V to $24 \mathrm{~V} D C$
Output: 14 kV DC 100 micro amps at 24 V . Progressively reducing for lower input voltages Price $\mathbf{£ 1 1}$

Unless stated - please add $\mathbf{£ 2 . 0 0}$ carriage to all units.
VALUE ADDED TAX not included in prices-please add 8\%
Official Orders Welcomed, Gov./Educational Depts., Authorities, etc., otherwise Cash with Order Open 9 am to 6.30 pm any day (later by arrangement.)

7/9 ARTHUR ROAD, READING, BERKS. (rear Tech. College, Kings Road)
Tel.: Reading 582605/65916

TAUT SUSPENSION MULTIMETERS

Made in USSR
 For ex-stock delivery*

TRADE ENQUIRIES INVITED PLEASE WRITE FOR FULL DETAILS

SPECIAL OFFER OF L.E.D.S
Twelve Light Emitting Diodes Type HP5082/4850. 0.20 mm dia., bright diffused red light. Operating curremt 20 mA at 1.65 V .

ONLY $£ 1.75$ incl. P.P. and VAT

1-AMP SILICON RECTIFIERS

20 pieces	1N4001	50 p.i.v.	f1.12
.	1 N 4002	100 p.i.v.	£1.25
"	1 N 4003	200 p.i.v.	f1.35
*	1N4004	400 p.i.v.	f1.45
"	1N4005	600 p.i.v.	£1.55
"	1N4006	800 p.iv.	f1.85
	1N4007	1000 p.is.	£2. 1

This is a special offer and minimum quantity of 20 pcs must be ordered. These prices are inclusive of P.P. and VAT.
11.5 AMP THYRISTORS

BTX47-1200R P-GATE Reverse blocking Thyristors Peak reverse voltage 1200 V . Trigger voltage 3.5 V f2.00*

Specials offer of $10 \mathrm{pcs} \quad \mathbf{£ 1 2 . 0 0}$
Inclusive of P.P. and VAT.

PHOTO-CONDUCTIVE CELLS			
ORP12	$\mathrm{f0.60*}$	ORP69	$\mathrm{f0.60*}$
ORP60	$\mathbf{f 0 . 6 0 *}$	ORP90	$\mathrm{f1.10}^{*}$
ORP61	$\mathrm{f0.45*}$	ORP93	$\mathrm{f1.10}^{*}$

Please write for full catalogue and Price list of Valves, Semi-conductors, Test Equipment and Passive Components.

Minimum Account Drier \& Charge $\mathbf{£ 1 0 . 0 0}+$
VAT, otherwise cash with order. Prices are exclusive of VAT unless indicated. When remitting cash with order please add $£ 0.50$ per Multimeter or f 0.15 in $£$ for other items.

MINIMUM ACCOUNT ORDER CHARGE £10.00 PLUS VAT. OTHERWISE CASH WITH ORDER PLEASE
 *Prices are exclusive of VAT
 Tel. 7275641 44A WESTBOURNE GROVE, LONDON W2 5JF Telex 261306

WW-038 FOR FURTHER DETAILS

TELEPHONE DIALS (New) £1 ea.
RELAYS (G.P.O. ' 3000 '). All types, Brand
 EXTious Colours $£ 3 \cdot 50$. P.P. 25p. Excellent condition.
RATCHET RELAYS. (310 ohm) Various Types 85p. P.P. 5p.
UNISELECTORS (NEW) 25 way 12 Bank (Non Bridging) 68 ohms. $\mathbf{f 6}$. P.P. 30p.

PRECIBION A.C. MILLIVOLTMETER (Solartion) $1.5 \mathrm{~m} . \mathrm{v}$. to 15 V : 60 db to 20 db . 9 ranges. Excellent condition. P. £1-50.

HIGH CAPACITY ELECTROLYTICS
$2,200 \mathrm{uf} .100 \mathrm{v}$. $(11 \times 4 \mathrm{in}) 75 \mathrm{p} .3,.150 \mu \mathrm{ff} 40 \mathrm{v}$. ($11 \times 4 \mathrm{in})$.60 p . $10,000 \mu \mathrm{ff}$. 25 v . ($1 \div \times 4 \mathrm{in}$.) $60 \mathrm{p} .12,000 \mathrm{uf}$. 40 vg . ($2 \times 4 \mathrm{in}$.)

 H.D. ALARM BELLS. 6 in . Dome $6 / 8$ volt D.C. $\mathrm{E} 2 \cdot 2 \mathrm{~F}$. P.P. 50p.

HIGH VACUUM DIFFUSION PUMPS (Matrovac 093C). Now condition. [40. P.P. £2. A.E.I. P10. ION Pump Control Units. $£ 17.50$.
OVERLOAD CUT-OUTS. Panel mounting ($1 \frac{2}{4} \times 1 \frac{1}{6} \times \mathrm{i} \mathrm{in}$.) $800 \mathrm{M} / \mathrm{A} / 1.8 \mathrm{gmp} / 10 \mathrm{amp} .35 \mathrm{pea}$. P.P. 5 p .
BULK COMPONENT OFFER. Resistors/Capacitors. All types and values. All new modern components. Over 500 Pleces Ez . (Trial order 100pcs. 50p). We are confident
you will re-order. you will re-order.
REGULATED POWER sUPPLY, Input $110 / 240 \mathrm{v}$. Output 9v. DC. $1 \frac{1}{2}$ amp. 12 v , D.C. $500 \mathrm{~m} / \mathrm{a}$. £4. P.P. 30p.
U.K. ORDERS 8\% V.A.T. SURCHARGE

TRANSFORMERS

ADVANCE "VOLSTAT" TRANSFORMERS. Input 242v. A.C.
CV50. 38 v , at $1 \mathrm{amp}: 25 \mathrm{v}$, at $100 \mathrm{~m} / \mathrm{a}$. 75 v , at $200 \mathrm{~m} / \mathrm{a}$. £2 ea. P.P. 40p.
CV75. 25 V , at $2 \frac{1}{\mathrm{t}} \mathrm{amp}$. $\mathbf{E 2}$.50. P.P. 50 p .
CV100. 50 v . at $2 \mathrm{amp}: 50 \mathrm{v}$, at $100 \mathrm{~m} / \mathrm{a} . \mathbf{E 3}$. P.P. 50 p . CV250. 25 v , at $8 \mathrm{amp}: 75 \mathrm{v}$, at $\frac{1}{2} \mathrm{amp}$. £5. P.P. £1.
CVEOO. 45 v at $3 \mathrm{amp}: 35 \mathrm{v}$, at $2 \mathrm{amp}: 25 \mathrm{v}$. at 3 amp . £7. P.P. £1.
L.T. TRANSFORMER. Prim. 240 v . Sec. 13 v . at $1 \cdot 5$ amp. 75p. P.P. 15 p.
L.T. TRANSFORMER. Prim. 240v. Sec. 24 v . at $1 \frac{1}{1}$ amp. $£ 1 \cdot 20$. P.P. 20 p .
L.T. TRANSFORMER. Prim. $110 / 240 \mathrm{v}, \mathrm{Sec}, 0 / 24 / 40 \mathrm{~V}$ $1 \frac{1}{2}$ amp. (Shrouded). £1 50. P.P. 30 p .
1\% L.T.TRANSFORMER. Prim. 200/250v. Sec. 20/40/60v.
at 2 amp. (Shrouded). £2-25. P.P. 40 p . at 2 amp . (Shrouded). £2-25. P.P. 40p.
L.T. TRANSFORMER (H.D.) Prim. 200/250v, Sec. 18 v . at $27 \mathrm{amp}: 40 \mathrm{v}$, at $9.8 \mathrm{amp}: 40 \mathrm{v}$, at 3.6 amp : 52 v , at $1 \mathrm{amp}: 25 \mathrm{v}$, at 3.7 amp . £15. P.P. £2.
h.t. transformer. Prim. $110 / 240 \mathrm{~V}$. Sec. 400 v . $100 \mathrm{~m} / \mathrm{a}$. £2. P.P. 50 p .
E.H.T. TRANSFORMER. 240 v . Sec. 1800 v .50 mA . £2.EO. P.P. 50p.
L.T./H.D. TRANSFORMER. $210 / 240 \mathrm{v}$. output 17 v . at 60 amp . $£ 12 \cdot 50$. P.P. £1.
L.T. TRANSFORMER. $110 / 240 \mathrm{~V}$. ('C. Core). Secs. $1 / 3 / 9 / 27 \mathrm{v}$, at 10 amps . $\mathbf{£ 6} \cdot \mathbf{5 0}$. P.P. 75 p .
L.T. TRANSFORMER. Pim. 240v, Sec. 16/0/16v. at 2 amp. $£ 1$ '60. P.P. 20p.
L.T. TRANSFORMER. Ptim, 110/240v. Sec. 23/0/23v. at $1.8 \mathrm{amp}: 50 \mathrm{v}$. at $300 \mathrm{~m} / \mathrm{a}: 3 \cdot 15 / 0 / 3 \cdot 15 \mathrm{v}$, at $300 \mathrm{~m} / \mathrm{a}$. £1.75. P.P. 20p.
L.t. TRANSFORMER. Prim. 200/240v. ('C' Cote). Secs. $1 \mathrm{v} . / 3 \mathrm{v}, / 8 \mathrm{v} / 9 \mathrm{v}$, all at $1.5 \mathrm{~A}: 50 \mathrm{v}$, at 1 amp . £2. P.P. 25p.
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core). Sec. $13.5 \mathrm{v}, 4 \mathrm{~A},: 39 \mathrm{v}$, at $2 \mathrm{~A}, \mathbf{£ 2} \cdot \mathbf{5 0}$. P.P. 25 p .
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' Core) $1 \mathrm{v} . /$ $3 \mathrm{v}, / 9 \mathrm{v}, / 20 \mathrm{v} . / 20 \mathrm{v}$. all at 2 amp . £3. P.P.
Secondaries but at 4 amp. $£ 4 \cdot 25$. P.P. 40 p. Secondar
L.T. TRANSFORMER. $110 / 240 \mathrm{v}$. ('C' CoIe). Secs. $1 \mathrm{v} / 3 \mathrm{v} / 9 \mathrm{v}$. all at $10 \mathrm{amp}: 35 \mathrm{v}$, at $1 \mathrm{amp}: 50 \mathrm{v}$, at $750 \mathrm{~m} / \mathrm{a}$ £5-25. P.P. 50 p.

HIGH-SPEED MAGNETIC COUNTERS. 4 digit (non reset) 24 v . or 48 v . (state which) $4 \times 1 \times 1 \mathrm{in}$. 40p. P.P. 5p.
5 digit (Non-reset) 24v. 75p. P.P. 5p.
3 digit 12 v . (Rotary Reset) $2 \div \times 1 \frac{1}{4} \times 1 \frac{1}{\mathrm{i}} \mathrm{in} . \mathrm{f} 1$ each.
3 digit 12 v , (Reset) $3 \frac{1}{4} \times 1 \times 1 \mathrm{in}$. £2.25. P.P. 5p.

MULTICORE CABLE (P.V.C.)
6 core (6 colours) 3 screened, 14/0048. 15p. yd. 100 yds. £12.50.
20 core (2 screened) $17 \frac{1}{2} \mathrm{p}$ yd. 100 yds . $£ 15$.
24 core (24 colours) 20 p yd. 100 yds . $\mathbf{£ 1 7 . 5 0}$.

Minimum order 10 yds .
RIBBON CABLE (8 colours)
f1.2
10 m.
$\mathbf{E 1 0}$
100 m . SMALL MOTOR ($1 / 50$ H.P) 900 R.P.M. $230 / 250$ v. A.C. f1-50. P.P. 30p.

RELAYS

SIEMENS/VARLEY PLUG-IN. Complete with transparent dust covers and bases. 2 pole c / o contacts 35 p ea. 6 make contacts 40p ea. ; 4 pole c/o contacts 50 p ea. 6 -12-24-48v. types in stock.
12 VOLT H.D. RELAYS ($3 \times 2 \times 1 \mathrm{in}$.) with 10 amp . silver contacts 2 pole c/o 40p ea.; 2 pole 3 way 40p. P.P. 5 p. 24 VOLT H.D. RELAYg ($2 \times 2 \times 4 \mathrm{in}$.) 10 amp . contacts, 4 pole c/o. 40 p ee. P.P. 5 p.
240v. A.C. RELAYS. (Plug-in type), 3 change-over 10 amp . contacts. 75 p (with base). P.P. 5p.
P.A.R. BISTABLE RELAY (Latching) 24 v . D.C. $4 \mathrm{c} / \mathrm{o}$ contacts 65 p. P.P. 5 p.
SILICON BRIDGES. 100 P.I.V. $1 \mathrm{amp}=\frac{5}{2} \times \frac{1 \mathrm{in} \text {.) } 30 \mathrm{~g} .}{}$ 200 P.i.V. 2 amp 60p.
24 VOLT A.C. helays (Plug-in).
3 Poie Change-over 60 p .
2 Pole Change-over 45p.
WE REGRET THAT ALL ORDERS VALUE UNDER ES MUST BE ACCOMPANIED BY REMITTANCE.

Wilkínsons

RELAYS ${ }^{\text {P.O. TTPE }}$
BUILT TTO YOUR SPEEIIICATION: TIVE PRIGES WITH A QUICK DELIVERY SERVICE. QUOTATIONS BY RETURN HOME AND OVERSEAS. PO type MINIATURE UNISELECTOR including
JACK 12 outlet, 2 bridging 1 non-bridging wipers.
This compact ratchet-driven 3 -level Uniselector is of unique design and occupies no more space than PO standard 3000 -type Relay $£ 8-50$ each. PO type 2 UNISELECTORS all 25 outlet 8 leve
non bridging wipers 300 ohms $£ 14$ ea. 11 level
 ER O 4 pole 50 way all non bridging 75 ohms $\mathrm{E17}$ ea PRECISION PORTABLE VOLTMETER PRECISION PORTABLE VOLTMETER case with hing
\times 2) $£ 1$ extra. N.S.F. LEDEX DC SOLENOID OPERATED WAFER SWITCHES 24 Pole 11 Way and Off 54 Pole On/Off. 9 Wafers, continuous duty voltage volts £15 each. According to duty cycie, operating voltages can be up to 3 times those
MINIATURE
fanged fanged lamps. weight $3 \frac{1}{2}$ ozs, reading

ALL BRITISH MOVING COIL RECTIFIER AC METERS

2 inch flush square
20 Volts
50 Volts
100 Votss
200 Volts
201 inch flush rournd
100 Microamps
200 Microamps
500 Microamps
200 Volts

£3-25 ea.	$3 \frac{1}{2}$ inch Flush round
f3. 25 ea.	200 Microamps
E3.25 ea.	500 Microamps
E3.25 ea.	10 Milliamps
£4-25 ea.	20 volts
84.00 ea.	50 Volts
£400 ea.	100 Volts
c3.25 ea.	200 Volts

L3.25 ea.
ea. \qquad BRIDGE MEGGERS series 1. 1.000 volts range $0 / 100 \mathrm{meg}$-ohms/intinity with resistance box MINIATUREBUZZERS \cap HIGH SPEED COUNTERS £1.75 өach $6-12$ volts, with
tone adjuster 50 p each as illus. 15 p each for \square 3 tin. $\times 1 \mathrm{in}$. 10 counts per second
with 4 figures. The following D.C. with 4 figures. The following D.C.
voltagas are available $6 \mathrm{v} . .12 \mathrm{v}$.
24 $24 \mathrm{v} .50 v.$. or 110 v . Auxiliary
tacts. normally open, 40 p extra

SPECIAL OFFERS

BERCO ROTARY STUD SWITCHES 3 Bank 3 Pole 20 Way with control knob $£ 4$ each.
ElCOM WINKLER SWITCHES 3 Bank 12 Pole 2 Way $\mathbf{E 4}$ each.
HOOM THERMOSTAT Adjustable between $45-75$ degrees F 10 amp 250 volt bakelite case MMERSION THERMO
IMMERSION THERMOSTAT Adjustable between 70-190 degrees F 20 amp 0 to 440 voit 11 inch stem complete with one hole fixing sheath Satchwell $\mathbf{E Z}$ each.
PUSH BUTTON UNIT Twin S.P.D.T. Red and Green Buttons in metal trame size $4 \frac{3}{2} \mathrm{in}$. X in. $2 \frac{1}{2} \mathrm{in}$.22 each.
SWITCHES FOR MODEL RAILWAYS, ETC. Single Pole OnJOff 4 hole fixing with locking device 50 pence each, Single Pole 3 Way, suitable for use as SP Change Over with Off
position 50 pence each. BANK OF 5 SWITCHES ON/OFF 6 hole fixing, flush mounting PACK OF ONE EACH OF 8 SPECIAL OFFERS OESCRIBED ABOVE FOR ONLY $£ 10$. All prices shown are carriage paid UK only but subject to VAT at the standard rate.
STOCKISTS OF ALL STUART TURNER PUMPS, CENTRIFUEAL TYPES 10 ANI 12 AVAILABLE NOW. ONGIEY RD L. WILKINSON (CROYDON) LTD., LONGLEY HOUSE WW- 066 FOR FURTHER DETAILS

WEN PRACTICAL PAPERBACKS FREM FOULEHAM-TAE

BASIC TV COURSE by George Kravitz
$£ 1.50$
NEW SKILL-BUILDING TRANSISTOR PROJECTS AND EXPERIMENTS
by Louis E. Gardner Jr. $£ 1.45$
RADIO CONTROL HANDBOOK by Howard G. McEntee $£ \mathbf{£ 1 . 9 0}$

TRANSISTORS: THEORY AND PRACTICE
by Rufus P. Turner
£1.40
WORKING WITH
SEMICONDUCTORS
by Albert C. W. Saunders $\mathbf{£ 1 . 5 0}$
CASSEITE TAPE RECORDERSHOW THEY WORK-CARE \&
REPAIR
by Walter Salm
£1. 60
ELECTRONIC MÉASUREMENTS SIMPLIFIED
by Clayton Hallmark $\mathbf{E 1 . 7 0}$
SOLID-STATE CIRCUITS
GUIDEBOOK
by Brice Ward
$£ 1.75$

10 MINUTE TEST TECHNIQUES FOR PC SERVICING by Art Margolis
£1.60

TV BENCH SERVICING
TECHNIQUES
by Art Margolis
£1. 65
MINIATURE PROJECTS FOR
ELECTRONIC HOBBYISTS by Ken W. Sessions Jr. $£ 1.45$

FM STEREO/QUAD RECEIVER SERVICING MANUAL by Joseph J. Carr
$\mathbf{£ 1 . 5 5}$

TROUBLESHOOTING SOLIDSTATE WAVE GENERATING AND SHAPING CIRCUITS by Ben Gaddis
$£ 1.55$

THE 2-METRE FM REPEATER CIRCUITS HANDBOOK by Ken W. Sessions
£1.90

PINPOINT TRANSISTOR TROUBLES IN 12 MINUTES
by Louis E. Gardner Jr. $£ \mathbf{£} . \mathbf{5 0}$

NEW ITEMS

Abstract

Car Cassette Power Kit. With a stabilized output of 6 v . 9 v or 12 v . The kit comprises transistors, zener diode, resistors transistors, zener diade, resistors and condensers. Price £2.10. Suitable plastic case 40 p extra, Black Uight as used in discotheques and for Black Light as used in discotheques and for stage effects, etc. Virtually no white light stage effects, etc, Virtually no white light appears until the rays impinge on luminous appears until the ravs impinge on luminous paint or white shits, etc. We offer $12^{\prime \prime} 8 w$ tubes complete with starter choke. lamp-holders and starter-holder. Price $£ 2.75+30 \mathrm{p}$ post. Tubes only $£ 2+30$ p post. Tubes only $£ \mathbb{q}+30 \mathrm{p}$ post, $8 \mathbf{k V}$ Rectifiers. For repl TVs or for experimenting with really high TVs or for experimenting with really high maker, 45 p each, Quantity prices available. 15-way Screen Cable. Suitable for equipment wiring, multi-way telephone installations, etc. Each core has seven strands copper, PVC insulated and colour coded differently from every other core. These are then laid together encased first by a motal screen and then grey PVC. Price 30 p metre or 10 metres $£ 2.50$. Touch Switch. This switch suitable for up to $\frac{1}{2}^{\prime \prime}$ amps mains voitage. Stands up approximately direction it is pushed, it makes contact. Base size approximately $2 \frac{1}{4}^{\prime \prime} \times 2^{\prime \prime}$. Price $25 p$ each. Light Switch. Autornatically switches on lights at dusk and off at dawn. Can also be used where light and dark is a convenient way used where light and dark is a convenient way to stop and start an operation. Requires only a pair of wires to the normal switch. In a pair of wires to the normal switch, In bakelite box, normal switch-plate size, 1 amp model £2.95. Meters. All flush mounting with chromeplated surround. $0-2 \mathrm{amp} 40 \mathrm{p}, 0-3 \mathrm{amp} 45 \mathrm{p}$, Rectifiers. All 24 v full wave (bridge) with | cooling fins. $1 \frac{1}{2}-2 \mathrm{amp}$ |
| :---: |
| $5-7 \mathrm{amp} \mathrm{ET} .25$. $3-4 \mathrm{amp} 85 \mathrm{p}$. | $5-7$ amp fi. 25 . Constant-voltage Transformer. Americanmade 500 w loading. Input voltage can be either $115+$ or -20% or $220+$ or -20%. For 50 c.p.s. mains output 115 v 50 c.p.s. A real quality transformer, probably cost well over

\section*{price $£ 45$ plus carriage
 AM/FM TUNER}

made by the American GEC company, 8 -tran-
sistor, all wired ready to work. Complete with tuner condenser, needs only scale and pointer. Tunes $A M$ range 540 to 1620 KHz . FM range
88 to 108 MHz . Switches for on/off and AFC. 88 to 108 MHz . Switches for on/off and AFC. plus $30 p$ post. Three or more post free.

TERMS: Add 8\% VAT. Send postage where quoted-other items, post free if order for these items is E6, otherwise add 30 p .

J. BULL (ELECTRICAL) LTD.
 (Dept. w.w.)

 102/3, TAMWORTH ROAD, CROYDON CRO $1 \times X$
MULLARD UNILEX STEREO SYSTEM

 There is no doubt that it is a good systom, webelieve that for the money it is withoutcomparison We demonstrate pladly at our Tamworth Road depot. Prices of the individual items for this: 1 Unilex Amplifier Unilex Pre-Amp Unilex Power Unit \quad Ref. EP. $9001 £ 1.80$ Control panel kit with spun-aluminium 2.30 knobs $\mathbf{£ 3 . 3 0}$. Or the complete outfit- $\mathbf{£ 1 1 . 3 0}$

TANGENTIAL HEATER UNIT

This heater unit is the very latest type, most efficient, and costing $£ 15$ and more. We have a few blower heaters motor, impeller. 2 kWW element and 1 kW element allowing Can be fitted into any metal line case or cabinet. Only needs control switch. $£ 3.85$. 2 kW Model as above except $2 \mathrm{~kW} £ 2.75$. Don't miss this. Control Switch 44 p . P. \& P. 40 p .

THIS MONTH'S SNIP

SOUND TO LIGHT UNIT Add colour or white light to your amplifier, Will operate 1,2 or 3 lamps (maximum 450 w). Unit in box all ready to work. postage.

15A ELECTRICAL PROGRAMMER

Learn in your sleep: Have radio playing and kettle boiling as you awake - switch on lights to ward off intruders-have warm house to come home to. All
these and many other things you can do it you invest in an electrical programmer. Clock by famous maker with $15-\mathrm{amp}$. on/off switch. Switch-on time can be set anywhere to stay on up to 6 hours.
Independent 60 -minute memory jogger. A beautiful unit. Price $£ 2.15+20$ p p. \& p, or with glass fron chrome bezel 83 p extra.

TAPE DECK

In metal case with carrying handle, heavy fly wheel and capstan drive. Tape speed $3 \frac{3}{4}$. Mains operated on metal plarform with tape head and guide. Not new but guaranteed perfect. Price $\mathbf{£ 1 . 9 5}$ plus $\mathbf{£ 1}$ post and insurance.
.

P. F RALFE 1 ocmanas stanow men
 P. F. RALFE hemorm wa

SIGNAL GENERATORS

MARCONI TFBOID/IS. $10-480 \mathrm{mHz}$ P.O.A. MARCONI TF801B/2S. $10-480 \mathrm{mHz} \quad £ 225$. MARCONI TFI44H $10 \mathrm{kHz}-72 \mathrm{mHz}$ P.O.A.
MARCONI TFI 370 RC Oscillator $10 \mathrm{kHz}-10 \mathrm{mHz}$. Sine/Square. ROHDE \& SCHWARZ SMAF (illustrated) AM/FM $4-300 \mathrm{mHz}$. ROHDE \& SCHWARZ SMLR $15-30 \mathrm{mHz}$ power generator, P.O.A. RACAL/AIRMEC 201 A. $30 \mathrm{kHz}-30 \mathrm{mHz}$. As new. P.O.A. ADVANCE SG2I VHF Square-wave generator $9 \mathrm{kHz}-100 \mathrm{mHz}$. $\mathbf{£ 2 5}$.

OSCILLOSCOPES

TEKTRONIX 555 (Late model) with two ' L ' plugins and ' $21 A^{\prime}$ ' and ' $22 A^{\prime}$ ' plug-ins. TEKTRONIX $545 A$ with CA unit. DC -30 mHz . Price only $£ 295.00$. TETRONIX $531 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in TETRONIX $535 \mathrm{DC}-15 \mathrm{mHz}$ with L type plug-in ITT METRIX miniature portable scope. DC-10mHz, Brand new, $\mathbf{6 5 0}$. NB: Due to the fragile nature of CRTs we regret that these oscilloscopes cannot be despatched by post. Collection only or delivery could be arranged.

MISCELLANEOUS TEST EQUIPMENT

MARCONI TFI400S double pulse generator with TM6600/S secondary pulse unit. £105.
MARCONI TF79ID deviation meter. $4-1024 \mathrm{mHz}, 0-100 \mathrm{kHz}$ deviation.
MARCONI TFI342 low-capacitance bridge $0.002 \mathrm{pf-1,1} \mathrm{\|} \mathrm{lpf}$. Resistance I-1000M.ohm, 685.
ROHDE \& SCHWARZ USVD calibrated receiver $280-4,600 \mathrm{mHz}$. ROHDE \& SCHWARZ A.F. Wave Analyser type FTA $0-20 \mathrm{kHz}$ plus log/lin AF meter incorporated. Excellent condition.
ROHDE \& SCHWARZ URV milli-voltmeter BNIO913 (late type) ImV-10V. With 'T' type insertion unit, free probe and attenuator heads. $1 \mathrm{kHz}-1,600 \mathrm{mHz}$. $£ 175$.
COSSOR 1453 True RMS milli-voltmeter. Excelient. £75.
ADVANCE PG54 Pulse generator. AS NEW.
SOLARTRON EMI006 production-line resistance tolerance check-set. $0-15 \mathrm{M}$ ohm digital read-out.
AIRMEC TYPE 210 modulation meter. Excellent condition. WAYNE KERR B521 LCR Bridge. Excellent condition. $\mathbf{6 5 5}$. EDDYSTONE 770R VHF Receiver covering $19-165 \mathrm{mHz}$. As mew. $£ 125$

Abstract

MUFF Dimensions $4.5 \times 4.5 \times 1.5 \mathrm{ins}$. Yery quiet running, precision fan specially designed for cooling etc. For equipment, amplifiers (practise is to run from split primary of mains transformer or use suitable mains dropper). CC only II Watts, List price over 610 each. Our price, in brand new condition, is $£ 3.50$.

POLARAD Model SAB4WA SPECTRUM ANALYSER $10 \mathrm{MHz}-63 \mathrm{GHz}$. I.F. Markers. Spectrum calibrator. Log/Lin scale. NB. This is not the instrument with the expensive TWT to replace. Suppled condition. Guarantee.

MANY TYPES of

 BNC plugs 50Ω. 30p. BNC sockets 50Ω. 25p. N. Type plugs 502. 50p. Burndept plugs. 40p. Burndept Miniature sockets. 20p.All connectors are brand new. Immediate delivery. Please add appropriate postage.

DURATRAK YARIACS type 100 L . 230 V . AC Input. $0-230 \mathrm{~V}$. AC Output, at 8 amps, Brand new units, less contro knobs. Price only $615 \cdot 00$. Carriage f l MINI HELIPOTS
500Ω Beckman Linearity Tolerance 0.075% (10 Turn). IK Ω Beckman Linearity Tolerance 0.25% (10 Turn) 20Ω Colvern CLR $26 / 6310 / 9 \$$ (3 Turn) $5 \mathrm{~K} \Omega$ Colvern (10 Turn).

AVO VALVE TESTERS Brief-case type 160. Full working E65.

AERIAL CHANGE/OVER RELAYS of current manufacture designed especially for mobile equipments, coil voltage 12 v , frequency up to 250 MHz coil 50 watts. Small size only. 2 in. $x \frac{z}{}$ in. Offered brand new, boxed. Price $£ 1-50$, inc. P.\&P.
RACAL/AIRMEC VHF/UHF Millivoltmeter type 301 A . Frequency range $50 \mathrm{~Hz}-900 \mathrm{mHz}$. Voltage range
$300 \mu \mathrm{~V}-3 \mathrm{~V}$ in eight ranges. Co-2xial $300 \mu \mathrm{~V}-3 \mathrm{~V}$ in eight ranges. Co-aXial
input 50 and 75 ohms BNC coninput 50 and 75 ohms BNC connectors.
ten ranges. Light-weight mains ten ranges. Light-weight mains
operated instrument in as new condition with handbooks. Other makes of voltmeter also available from stock.

HEWLETT-PACK

POWER METER
Type 432A. Power range luW10 mW in 7 ranges. Frequency range $10 \mathrm{mHz}-10 \mathrm{GHz}$. Automatic zeroing. With 478A co-ax mounts and carrying case. In excellent condition.
HEWLETT PACKARD
BOONTON TYPE 8900B
Peak-power calibrator. Measures true peak power $\pm .6 \mathrm{db}$ absolute. Frequency range $50-2000 \mathrm{Mhz}$. RF power range 200 mW peak, fullscale. RF Impedance 50 ohms.

POLARAD MICROWAVE

 RECEIYERModel ' R ' with tuning unit type RMT. Frequency range 4.2 GHz 7.65 GHz . AM/FM. In working condition. Price $£ 75$.

The help provided by EEIBA takes many forms. Last year more than 800 people who are, or had been, employed in the electrical and electronics industries received urgently needed money totalling $£ 94,000$.

It provided new homes in the EEIBA flats in Birmingham, an automatic invalid chair at the Lady Nelson Home, a new sewing machine for a disabled woman, a cooker for an elderly pensioner-and a brand new minicar as a prize for those contributing more funds for the continuation of EEIBA's work.

More important than any of these items was the friendship and reassurance given to people in need by the Association's voluntary workers all over the country.

This active and growing benevolent association helps people who are in need through illness, disability, accidentor general hard times. Many employers already know about EEIBA and support it generously. But we need the support of many thousands of employees who can give small regular contributions.

If you would like to receive more details about EEIBA, or if you know of any employee or former employee whom you feel should be helped by the Association, please write straight away to Tom Killick, the Director and Secretary.

The Electrical and Electronics

 Industries Benevolent Association8 Station Parade, Balham High Road, London SW129BH.
Telephone:01-6730131

ELEGTROALDE

TO-DAY'S BEST VALUES IN QUALITY AND SERVICE IN COMPONENTS

EVERYTHING BRAND NEW AND TO SPEC \star GOOD DISCOUNTS \star FREE POSTAGE (U.K.)

ROTARY, CARBON TRACK. Double wipers for good contact and long working life	
JP. 20 DUAL GANG log. 4 (7Kohms to 2.2megohms	
JP. 20 DUAL GANG Log/antiog 10 K . 22 K . 47 K .1	
2A DP mains switch for any of above 14p extra. Decades of 10,22 and 47 only available in ranges above. Skeleton Carbon Presets Type PR, horizontal or	
SLIDERNEW STEREO SLIDERSMatched tracks. Type PG58ST. Lin of \log	
Linear or $\log .4 .7 \mathrm{~K}$ to 1 meg . in all popular values SINGLE TRACK	
CAPACITORS	
POLYESTER C. 280	
Radial feads for P.C.B. mounting. Working voltage 250 V d.c. $0.01,0.015,0.022,0.033,0.047$$0.068,0.1,0.15$ ${ }_{2}^{0.22,24 p} 2.0 .33,7 p: 0.47,8 p ; 0.68,11 p ; 1.0,14 p ; 1.5,22 p$	
0.1. $0.22,0.47,1.0 \mathrm{mF} / 35 \mathrm{~V}, 1.5 / 20 \mathrm{~V}$	
2.2/15V. $2.2 / 35 \mathrm{~V}, 4.7 / 16 \mathrm{~V}, 10 / 6.3 \mathrm{~V}$	
10/25V, $22 / 16 \mathrm{~V}, 47 / 6.3 \mathrm{~V}, 100 / 3 \mathrm{~V}, 6.8 / 25 \mathrm{~V}, 15 / 25 \mathrm{~V}$ ee. ee. 20 p	

pOLYCARBONATE
Values in $\mathrm{mF}: 0.0047: 0.0068: 0.0082 ; 0.1: 0.012$

Working voltage 100 V d.c

0.277 p:0.33 $8 \mathrm{p}: 0.39: 0.47$
$0.5612 \mathrm{p} ; 0.68$
0.56 12p;0.68

6p
13p
13p

SILVERED MICA

 1000. 1500 7p: 1800 8p: 2200 10p: 2700,3600 12p:
4700,5000 15p: 6800 20p: $8200,10,00025 \mathrm{p}$.

CERAMHC DISC
$1000 \mathrm{p} / 500.2000 / 500.5000 / 500,0.01 \mathrm{mF} / 50,0.02 \mathrm{mF} / 50$
$0.1 \mathrm{mF} / 3-$ each $2 \mathrm{p}: 0.05 \mathrm{mF} / 50 \mathrm{~V}-3 \mathrm{p}$
ceramic plate
In a range of
each 26

ZENER DIODES

$200 \mathrm{~mW}: 2.7 \mathrm{~V}$ to 36 V .14 p each $1 \mathrm{~W}: 6.8 \mathrm{~V}$ to 82 V . 21p pach: $1.5 \mathrm{~W}: 4.7 \mathrm{~V}$ to 75 V , 67 p each. trype 266FI. 6p.
20 W 7.5 V to 75 V
20 W 7.5 V to 75 V 69p each
VEROBOARD
Copper clad 0.1 matrix -2.5×3.75 ins. $27 \mathrm{p}: 3.75 \times 3.75$
ins.- $30 \mathrm{p}: 2.5 \times 5$ ins, $30 \mathrm{p}: 3.75 \times 5$ ins $-\mathbf{3 3 p} \times$. clad 0.15 in. matrix $2.5 \times 3.75 \mathrm{ins}$. $\mathbf{2 0 p}$: $3.75 \times 3.75 \mathrm{ins}$. $30 \mathrm{p}: 2.5 \times 5$ ins. $\mathbf{3 0} \mathbf{p}: 3.75 \times 5$ ins.- $\mathbf{3 6 p}$.
Vero spot face cutter (any matrix) 43 p .
0.040 pins (for 0.1 matrix) per $100-\mathbf{3 5 p}$.

MINITRON DIGITAL INDICATORS
3015 F Seven segment filament. compatible with standard logic modules. $0-9$ and decimal point: 9 mm characters Suitable BCD decoder driver 7447 Suitable BCD decoder driver 7447
$\mathbf{3 0 1 5 G}$ showing + or $-\& 1 \&$ dec. pt

LEDS (Light Emitting Diodes)
Isco
DISCOUNTS
Available on all items except
those shown with NETT PRICES 10%, on orders from
f5 to E14.99. 15% on orders

FREE PACKING

 AND POSTAGE in U.K. for pre-paid mailorders.For mail orders for $£ 2$ ilist value For mail orders for $£ 2$ list value
and under there is an additional handling charge of 10 p . Overseas GIRD A/C No. 38/671/4002

THE BEST 100 TRANSISTORS			
${ }_{\substack{201307 \\ 2 N_{23} 2645}}$	47p		
	\% ${ }^{20}$		
	搨	${ }^{349}$	
	-	5o	
		${ }^{\text {atap }}$	
${ }^{\text {ALCOL }}$			
hUNDREDS MORE IN CATALOGUE 7			

ALUMINIUM BOXES

JACKS AND PLUGS

S-DEC

Unsurpassed for "treadboard work" can be used indefinitely and connecrautomatically. Slot for control panel. 70holes $\mathbf{£ 1 . 9 8}$ T-OEC
For more advanced work with 208 conracts in 38 rows. Will take COVERS \& HEATSINKS

ANTEX soldering irons
CN340
CCN240 $\mathbf{3 2 p}$
40 p

DESOLDER BRAID
66p
WAVECHANGE SWITCHES
1 pole 12 way: 2 pole 6 way
3 pole 4 way: 4 pole 3 way
TAG STPIP
each $\mathbf{1 1 p}$

NUTS, SCREWS, ETC.

4BA NUTS 28p: $\frac{1}{2}$ " 4 B Screws 28p:	6BA NUTS 28 $\frac{1_{2}^{\prime \prime}}{2}$ 6BA Screws 24
Threaded pillars 6BA. $\frac{1}{2}{ }^{\prime \prime}$ hexagonal	E1.6.
Plain spacers $\frac{1}{2}$ " ${ }^{\text {round }}$	E1-1

ENAMEL CDPPER WIRE in 2 ounce reels 16. 18, 20, 22 SWG 34p: $\quad 24,26,28,30$ SWG 40p
32,3446 p:

MAGNETO	RESISTORS LIOUID CRYSTAL SWITCHES DISPLAYS FERRITES
	SWPECIAL I.Cs

YOU NEED CAT SEVEN
Second printing (green and yellow covers) of Electrovalue
Catalogue $7-112$ pages-thoisands of items-components. accessories, materials, tools. Well illustrated and detailed information. 25p post free with spending voucher worth $25 p$
on orders $£ 5$ list value or more.

ELEGTROMALIE LTD
 Please address a/t communications, mail-orders, etc., to head office at Englefield Green and include SAE for first hoad oftrice at Englefield Gren and enguiries needing a written answer.

28, ST. JUDES ROAD, ENGLEFIELD GREEN, EGHAM, SURREY TW20 OHB Telephone Egham 3603, Telex 264475 Shop hours: 9-5.30 daily, 9-1 pm Sats. NORTHERN BRANCH: 680, Burnage Lane, Burnage, Manchester M19 1 NA Telephone (061) 4324945
Shop hours: Daily 9-1 and 2-5.30pm; 9-1 pm Sats
U.S.A. CUSTOMERS are invited to contact ELECTROVALUE AMERICA, P.O. Box 27. Swarthmore PA 19081.

QUALITY GUARANTEE
All goods are sold on the under standing that, they conform to
manufacturers' specificationsand manufacturers specifications and
satisfaction is guaranteed, as
such-no rejects is satish -no rejects, seconds' or
sub- is
sub-standard merchandise is sub-standard merchandise is
offered for sale. Prices quoted do not includio
V.A.T. for which 8% V.A.T. for which 8% must bo
added to total nett value of added to total nett value of
order. Every effort is made to
ensure the correctness of ensure the correctness of of
information and prices at time of information and prices at time of
going to press. Prices subject.
to alteration without notice. CONDUCTOR DEVICES - TRADE • RETAIL • EXPORT • EDUCATIONAL INDUSTRIAL SUPPLIED
FREE-New '74/75 Stock fists on request

EXTRA DISCOUNTS
$12+$ EXTRA $10 \% 25+$ EXTRA $15 \% 100$ + EXTRA 20%
INTEGRATED CIRCUITS

SN7400N	¢ ${ }_{\text {f }}$	SN7492N	${ }^{\text {¢ }} 0$	
SN7401N	0.16	SN7493N	0.70	
SN7402N SN7403N	0.16 0.16	SN7494N	0.80	$\mathrm{CASO13}^{\text {CA3018 }}$..... 1.02
SN7404N	0.26	SN7496N	0.95	${ }_{\text {CA3020 }}$: $:$: $: ~ 1.80$
SN7405N	0.22	SN7497N	3.87	CA3022 1.93
SN7406N	0.42	SN74100N	1.89	
SN7407N	0.42	SN74104N	0.58	CA3036 1.08
SN7408N SN7409N	0.28 0.28	SN74105N	0.59	
SN7410N	(0.28	SN7410)	0.58	
SN7411N	0.25	SN74111N	0.86	$\mathrm{CA3081}^{\text {a }}$..... 180
SN7412N	0.30	SN74116N	1.99	CA3089E 2.94
SN7414N	0.36	SN74119N	1.80	CA30900 5.40
SN7416N	${ }_{0}^{0.36}$	SN74120N	0.95	
SN7417N SN7420	0.36	SN74121N	0.50 0.70	Signotica
SN7421N	0.33	SN74123N	1.00	${ }_{\text {N } 25608}$
SN7422N SN7423N	0.25 0.37	SN74125N SN74132N	0.65 0.72	NE5618
SN7425N	0.37	SN74141N	0.90	
SN7426N SN7427N	0.32	SN74145N SN74150N	1.26	Motorota
SN7428	0.40	SN74151N	1.00	MC1303L $\mathrm{MC1304P}$ $\cdots .1 .72$ 1.79
SN7430N SN7 732 N	(1.16	SN74153N	$\begin{array}{r}0.95 \\ \hdashline .200\end{array}$	$\mathrm{MCl310P}^{\text {M }}$ (130. 2.91
SN7 SN333	0.37 0.37	SN74155N	$\therefore 1.00$ \therefore.	
SN7437N	0.37 0.37	SN74156N	1.00 0.95	MC170CG MFC4000 $: 0.60$ 0.055
SN7440N	0.22	SN74160N	1.38	MFC4010P \quad MFC6040 ${ }^{\text {a }}$
SN7442N	0.92 0.79	SN74161N SN74162N	-. 1.38	MFC6040P . 1.00
SN743N	1.27	SN74163N	- 1.38	Ochers
SN7444 SN7445	1.60	SN74164N SN74165N	1.76 1.76	
SN7446N	1.89	SN74166N SN74167N	疗.600	SNT6003N SN72741P
SN7447AN	1.87	SN74170N	3.00 2.58	${ }_{\text {SN727488 }}$
SN7450N SN751N	0.18 0.16	SN74173N SN7414N	1.68	
SN753N	0.16	SN74175N	1.57	${ }_{723 \mathrm{C}}^{723 \mathrm{C}}$. $\cdot0 .90$
SN7454N SN7460N	0.16 0.18	SN74176N SN7417	1.26	
SN7460N SN7770N	0.18 0.36	SN741780	1.26	${ }_{\text {2N414 }}^{747 \mathrm{C}} \ldots \ldots . .1 .100$
SN7472N SN743N	0.38 0.41	SN74181N SN74182N	3.95 1.28	748 C
SN743N	0.41	SN74184N	1.80	LM3096 TAA960
SN7475N SN7476N	0.59 0.45	SN74185N	1.80	TAA960 1.75
SN7480N SN7481N	(1.60	SN74191N	2.00	
SN7482N	0.87	SN74193N	2.00	SINCLAIR
SN7483N	1.10	SN74194N	1.30	$1 \mathrm{C12}$
SN7485N SN7486N	1.83 0.47	SN74196N SN74197N	1.20	
SN7489N	3.87	SN74198N	1.20	6W AMP
SN7490N SN7491AN	0.55 1.00	SN74199N		£2.20p

COSMOS INTEGRATED CIRCUITS FULL RANGE IN STOCK

STC \& ITT MINIATURE RELMS

IN-LINE MAINS

TAPE HEADS		
	${ }_{2}^{\text {¢ }}$ ¢ ${ }^{\text {P }}$	Marriot erase heads for XRSP
Marriot XPSP/18 - - -race med	3.50	17/18/36 0.75
Marriot XRSPP 36.4 -trace med	\$ ${ }^{5.75}$	
Marriot XRSP/63 érsese	0.75	Bogen type UL290 erase $\quad 1.50$
Marox		Miniature stereo-cassette rec/play $\mathbf{2 . 0 0}$ pp 15p

Suppressor as featured
ind in High-Fi Press £2.75 pp 15p

PORTABLE RADIO activity counter complete with power-pack $£ 9.97 \mathrm{pp} £ 1$	DOSIEMETERS 0-5R 62p $0-50 R$ 62p $0-150 R$ 62p 45 p each per dozen pp 15p	GRAVINER INFRA RED DETECTOR designed for heat or light detector containing 931 A photo multiplier £ 3.50 pp 25 n Twork. z.50 pp 25 ?	AMTRON KITS AVAILABLE EX STICK SEND FOR FREE LISTS
JOSTY KITS AVAILABLE EX STOCK SEND FOR FREE SEND FOR FREE LIST	INVERTER KITS 15 watt $\mathbf{£ 5 . 2 0 \mathrm { pp } 3 0 \mathrm { p }}$ 40 watt $\mathbf{£ 6 . 8 0} \mathbf{~ p p ~ 4 0 p}$	PPS BATTERY ELIMINATOR complete kits of parts including P / C boards £1.95 complete kit pp 15p	5 WATT AMPLIFIER KIT TBA 800 with printed circuit \& all components. $\mathbf{£ 2 . 7 0} \mathrm{pp} 15 \mathrm{p}$
3 WATT AMPLIFIER KIT complete with separate volume/tone controls for each channel with pp 15p	CRYSTALS 1 MEG. HC/6U TYPE £2.25 100 Kcs 81000 Kcs $10 \times$ TYPE $£ 1.50$	$\begin{aligned} & \text { SL 414A } \\ & \text { PLESSEY } \\ & \text { swatti.c. } \\ & \text { ع1.65 } \end{aligned}$	CERAMIC FILTERS miniature 10.7 maz . filters 40p pair pp 15 p
	MW/LW TUNER KIT $\underset{\text { ع5.25 }}{\mathrm{ML}} \mathbf{~ M k I V}$	ULTRASONIC TRANSDUCERS with data/circuits £5.90 pair TAA960 £1.75	HITACHI CATHODE RAY TUBE TYPE 310DGB4 Brand New pp 50 p

Samson's

9 \& 10 CHAPEL ST., LONDON, N.W.I $01-7237851$

01-262 5125 adjacent to edgware road met line station

STEP DOWN 24//14v AUTO TRANSFORMERS

 Other Typos available. $80-1500$ watts, fully shrouded, with
American socket outtet and 8 tt. mains lead, Let us know, your American socket outlet and $8 \mathrm{Ht}{ }^{n}$
requiremente. Send S.A.E. for llst.

AUTO TRANSFORMERS

Partrdge. Tapped do-200-230-240-250v 500 watta unghrouded table top
 carr. 50p.
©STEP DOWN TRANEFORMERS. IEOLATION TYPES
 115v iso warts. Open yype. Terminal block cannections ela, 75, P.P. 40 p . Drake Pri. $800-2200-240 \mathrm{~V}$ Sec. 110 v 50 watts. Open type. Table top connections $\mathbf{E 2}^{25}$ 25. P.P. 40 p

HOWELLS "C" CORE TRAWSFORMERS

 hections, size $7 \times 7 \times 7$ inches, $\mathbf{1 5 \cdot 0 0 ,}$ carr. 82.00 . Pri. 2200-240v
Sec. $18-0-18 \mathrm{vin} 5 \mathrm{amps}$ conservatively rated. Table top connections Sec. 18-0-18v 12.5 an
E10. 00 , carr. 8.00 .

STEWARTS HEAVY DUTY L.T. TRANSFORAERS Pri. $220-240 \mathrm{v}$. Sec. one. Tapped $4-5-8-3 \mathrm{vv} 12$ amps. Sec. two $2-5 \mathrm{v}$

PARMEKO ISOLATION STEP DOWN TRAMSFORMERE Prl. $200-220-240 \mathrm{y}$
rated. Sec. $90-100-110-180 \mathrm{y} ~$
7.5
Size $8 \times 8 \times 8$ amps conservatively rated. Size $8 \times 8 \times 8$,
E11:5N, carr. $88-00$.

PARMEKO ISOLATION 1-1 TRANGFORMERS

 Pri. 190 -2s0r in 10 r steps. Sec. 240v 10 amp conservatively rated.Size $12 \times 10 \times 8$ Inches. Enclosed type. Table top connections. Size $12 \times 10 \times 8$ Inch
cive 50 , carf, $89-00$.

TRANSFORMERS FOR LINSLEY HOOD AMPLIFIERS Fully shrouded, terminal block connections. Pri. $230-240 \mathrm{v}$. Screen

H.T. TRANSFORMERS EY FAMOUS MAKERS
No. 1 Pri. $110-210-230-250 \mathrm{y}$ Sec. 230 v
$200 \mathrm{M} / \mathrm{A}$ and 8.8 v 7 A . potted type $£ 3 \cdot 40$, P.P. 50 p.
 30 M/A. 15 V 1.2A 8.3 v 4.5 A . Open
type $£ 2.00, \mathrm{P}, \mathrm{P}$. 35 p .
No, 3 Pri. $220-240 \mathrm{~V}$ Sec, $250-0-250 \mathrm{v}$ type $£ 2.00$, P.P. 35 p .
No. 3 Pri. $220-240 \mathrm{~V}$ Sec. $250-0-250 \mathrm{~V}$
75 MIA B. 3 V 3 A R1.75, P.P. 85 p .

GENTS ALARM HELLS 6 yolt DC 6 Inch dia. Gong. Overal! size $4 \frac{1}{2} \times 6 \times 6$ Inches. $£ 3 \cdot 5 e_{\text {, P.P. }}$ Sop. DORMAH LOADMASTER S.P. CIRCUIT BREAKERS Type M3 250/440v 20 amps $\mathbf{5 1} \cdot 00$, P.P. $25 p$.

ITT LEVER SWITCHES Type 60 AAO 72.424 CO contacts,
overall tize $1 \frac{1}{2} \times 2 \times \frac{1}{2}$ Ins. White lever
orld flash contacts, 60 p . Three for gold flash contac
PLESSEY MINIATURE MICRO
SWITCHES Type LIC 7134 . One CO one break.
Gold flash contacts. Size
$\frac{z}{6} \times \frac{3}{4} \times \frac{1}{2}$
In . Three for 50 p , post paid.
SANGAMO SYNCHRONOUS 4 rev, per hour. Size 1z. plus is spindle.
13 SPECIAL OFFER OF OMRON Type Mk. ${ }^{2}, 24 \mathrm{v}$. AC. ${ }^{12 \mathrm{v} .} \mathrm{DC}$, Two
7 amp CO contacta, S hole fixing. iop, post 5p
Type Mk. 2 plug in octal base type.
2v. DC. Two 7 amp. CO contacts.
${ }^{12 v}$ v. DC. Two
RELAY CONTROL CO. American Miniature relays $6 \mathrm{~V}, \mathrm{DC}$. 1 CO contac
Size $\frac{12}{2} \times 1 \times \frac{1}{\frac{1}{2}}$ ins. 35 p , post. 5 p . Size $1 \frac{1}{2} \times 1 \times \frac{1}{2}$ ins. 35 p, post. 5 p . OIL-FILLEDBLO
MFD CAPACITORS
DCV WKG

OIL-FILLEDBLOCK		
MFD	DCV WKG	PRICE
	2500	63.00
8	800	75p
8	000	${ }^{60} \mathrm{p}$
8	350	40p
6	750	6p
6	000	50p
4	2000	81.00
4	1000	40p
4	100	40p
4	350	30 p
1	500	20p
P.P. Add 5 p each 1-4 MFD.		
10p each 6-8 MFD. 25 p each 8 MFD 2500 v .		
Plessey	+2 MFD 15	Ov. WKG
$70^{\circ} \mathrm{C} .75 \mathrm{p}, \mathrm{P} . \mathrm{P}, 10 \mathrm{p}$.		
TCC block electrolytic capacitors 1000 MFD 100 v DC WKG 50 p, P.P. 15p.		
MOTOR START CAPACITORS TUBULAR TYPES		
MFD 250 Y AC. $2 \cdot 6$ MFD 500 V DC. 2.5 MFD 360 v AC. 2.2 MFD 250 v AC.		
All at 50p, P.P. 10 p . Eire Minlature		

MARCONI SIGNAL GENERATOR TYPE TF-144G; Freq, $85 \mathrm{Kc} / \mathrm{s}-25 \mathrm{Mc} / \mathrm{s}$ in 8 ranges. Incremental: $\pm 1 \%$ at $1 \mathrm{Mc} / \mathrm{s}$. Output: continuously variable 1 microvolt to I volt. Output Impedance: I microvolt to 100 millivolts, 10 ohrns $100 \mathrm{mV}-1$ volt - 52.5 ohms. Internal Modulation: $400 \mathrm{c} / \mathrm{s}$ sinewave 75% depth. External Modulation: Direct or via internal amplifier. A.C. mains $200 / 250 \mathrm{~V}, 40-100 \mathrm{c} / \mathrm{s}$.
Consumption approx, 40 watts. Measurements $29 \times 12 \frac{1}{4} \times 10 \mathrm{in}$. Secondhand condition. $£ 27 \cdot 50$ each, Carr, $£ 2 \cdot 00$.
MODULATOR UNIT: 50 watr, part of BC-640, complete with 2×811 velves, microphone and modulator transformers etc. $\$ 7 \cdot 50$ each, Carr. $£ 2 \cdot 00$
CATHODE RAY TUBE UNIT: With 3in. tube, Type 3EG1 (CV1526) colour green, medium persistence complete with nu-metal screen, $\$ 3.50$ each, post 50 p . APN-1 INDICATOR METER, 270° Movement. Ideal for meking rev. counter. £1.25, post 30 p.
VARIAC TRANSFORMERS: Input 115V, output 0-135V at 2 Amps, £3 each. 75p post.
RA.CK CABINETS: (totally enclosed) for Std. 19 in . Panels. Size 6 ft . high $\times 21$ in. wide $\times 16$ in. deep, with rear door. $£ 12$ each, Carr. $£ 2 \cdot 50$.
CLASS "D" WAVEMETER NO. 1 MK. II: Crystal controlled heterodyne frequency meter covering $2-8 \mathrm{MHz}$. Power supply 6 V d.c. Good secondhand cond. $57 \cdot 50$ each. Post 60p.
HOTARY INVERTERS: TYPE PE.218E-input 24-28V d.c., 80 Amps.
$4,800 \mathrm{rpm}$. Output 115 V a.c. $13 \mathrm{Amp} 400 \mathrm{c} / 3.1 \mathrm{Ph}$ P.F.9. $617 \cdot 50$ each. Carr. $\mathbb{6 2 \cdot 0 0}$. REDIFON TELEPRINTER REIAY UNIT NO. 12: ZA-41196 and power supply $200-250 \mathrm{~V}$ a.c. Polarised relay type 3 SEITR. $80-0-80 \mathrm{~V} 25 \mathrm{~mA}$. Two stabi-
lised valves CV 286 . Centre Zero Meter $10-0-10$. Size 8 in . $\times 8 \mathrm{in}$. $\times 8 \mathrm{in}$. New lised valves CV 286. Centre
condition $£ 7.50$, Carr. 75 p.
TS 15C/AP ELUXMETER; Used to provide qualitative measurements of flux densities between pole faces of magnets. Range qualitative measurements of flux good cond. $f 25+60 \mathrm{p}$ post.
AUTO TRANSFORMER: $230 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$, 1000 watts. Mounted in strong steel.case $5 \mathrm{in} . \times 6 \frac{1}{1} \mathrm{in} . \times 7 \mathrm{in}$. Bitumen impregnated. 510 each, Carr. $\mathcal{C l}$.
UHF ASSEMBLY: (suitable for 1000 MHz conversion) incl. UHF valves; 2C42, 2C46, 1B40. Complete with associated capacitors and screening; 3 manual counters $0-999$. Valves 6AL5 and $8 \times 6 \mathrm{AK5}$. 610 each, 60 p post.
TELEPRINTER TYPE 7B, Pageprinter $24 V$ d.c. power supply, speed 50 bauds per min. 'as new' cond. in original packing case, 525 each; or second hand cond. (excellent order) no parts broken, $£ 15$ each. Carriage either type $£ 3 \cdot 00$.
INSULATION TEST SET: $0-10 \mathrm{kV}$ negative, earch with amplifier provision for checking ionisation. $110 / 230 \mathrm{~V}$ a.c. input. S/hand good cond. $\varepsilon^{30}+£ 1$ carr. AUTOMATIC VIBRATION EXCTTER CONTROL UNIT TYPE 1016: Manufactured by Bruel \& Kjoer. 5-5000c/s per sec. S/hand V. good cond. 880 Carr. $£^{2}$.
VRC $19 X$ MOBLLE TRANS/REC: $152-174 \mathrm{mc}$ F.M. Power o/put 25 watts. Input voltage 24 v . d.c. Weight 801 bs . 35.00 each, carr. 63.00 .
BRIDGE MEGGER: 250V. (Evershed Vignoles) series 2. $\mathbf{\%} 30$ each. Carr. $\{1$ BRIDGE MEGGER: $2,500 \mathrm{~V}$,, series 1 . $£ 30$ each. Carr. $£ 1$.
CRYSTAL, TEST SET TYPE 193: used for checking crystals in freq. range $3000-10,000 \mathrm{KHz}$. Mains 230 V 50 Hz . Measures crystal current under oscillatory conditions and the equivalent resistance. Crystal freq. can be tested in conjunction
with a freq. meter. $£ 15$. Carr. $\$ 150$.

RACAL OSCILLATOR: $1-100,000 \mathrm{KHz}$ in 1 KHz steps with digital readout, BFO, CWN, FSK, CWW, LSB, USB, ISB, DSB. Line 1 and 2. $£ 200$ each Carr. $£ 5$.
50-LINE TELEPHONE SWITCHBOARD: Complete with all plugs etc., excellent cond. f40 each, Carriage $£ 5$.
10-WAY TELEPHONE SOCKET STRIPS: 3 connections and 10 jackplugs to suit. Similar to PL68. Complete with 6 ft . cord. Ex-equipment, good cond, f4 each. Post 50p.
$10-W A Y$ TELEEPHONE LAMP STRIP: Suitable for use with the above. (62 each. Post 30p. the above items. $\{2$ each. Post 40 p .
10-WAY TELEPHONE SOCKET STRIP: 3 connections. Takes standard 10-WAY TELEPPHONE SOCKET STRIP: 3 connections. Takes standard
P.O. Jackplugs; 201 or 316 ; and 10-WAY TELEPHONE LAMP STRIP. P.O. Jackplugs; 201 or
$\ddagger 3$ the pair. Post 50 p .

DELPENA RF GENERATOR TYPE E.15: 15 kW at 500 Hz ; input 440 V 3 ph . 50 Hz . $\mathbf{6} 275$. Carr, at cost.
H.V. TRANSFORMER: $8000 / 8000$. Output 300 mA . rms. Size: $12 \mathrm{in} . \times 12 \mathrm{in}, \times$ 36 in .230 V input. $£ 35$, Carr. $£ 4.00$.
TELEPHONE CABLE: (Twin) $1,300 \mathrm{ft}$, on metal reel. $£ 5$ per reel. Carr. $£ 1$. ANTENNA MAST 30ft. consisting of $10 \times 3 \mathrm{ft}$. tubular screw sections ($\mathcal{F}^{\prime \prime}$ dia.) with base, guyropes and stays etc. 55 each, Carr. $£^{2}$.
APN-1 ALTIMETER TX/RX: Freq. approx. 410 MHz . Complete wit-28Y dynamotor, 3 relays, precision resistors, 11 valves. Useful breakdown for parts §4 each, Carr. f1-50.
AVO VALVE TESTER CT.160: (Portable) similar to Avo Mk. 3 Characteristic Meter. Good cond. $£ 35$ each, Carr. $£ 1.50$.
MODULATOR UNIT: Complete with mod. transformer and 2×807 Valves. Mounted $19^{\prime \prime}$ chassis, $8^{\prime \prime} \times 8^{\prime \prime}$ "As new" cond. $£ 8$ each; or secondhand $£ 5$ each Carr. both types $£ 1 \cdot 50$.
FIRE-PROOF TELEPHONES: $\boldsymbol{£ 2 5 \cdot 0 0}$ each, carr. $\boldsymbol{£ 1} 1 \cdot 50$
TF. 2000 A.F. SIGNAL SOURCE: $£ 175 \cdot 00$, carr. $£ 1 \cdot 00$.
WESTON INDUSTRIAL THERMOMETER MODEL 221: 0-100 3 inch. dia. scale. Accuracy 1%. $£ 3 \cdot 90$, post 30 p .
POWER UNIT: $110 / 230$ volts a.c. input. 28 volts d.c. at 40 amps output. $£ 39 \cdot 00$ each, carr. $\mathrm{SMOOT}^{3.00}$. UNIT (for the above): $£ 10.00$ each, carr, $£ 2.00$.
SOLARTRON PLUG-IN UNIT TYPE C X-1251: Wideband 40 MHz . 630 ea., SOLARTRON DUAL TRACE CX-1252: 24 MHz . $£ 35$ ea., 75 p post. X-BAND MODULATOR CALIBRATOR TYPE MC-4420-X: Mnfr. James
 75p post. 7.9 mA . Mnfr. Watkins \& Johnson. $£ 85$ ea., Carr. ©1.

LISTS OF EQUIPMENT AVAILABLE: MOTORS; TELEPRINTERS; AR88 SPARES; TEST EQUIPMENT ETC. Send 10 p for above lists.
AI. CARRIAGE QUOTES GIVEN ARE FOR 50 MILE RADIUS OF
ALL U.K. ORDERS SUBJECT TO 8\% VALUE ADDED TAX. THIS MUST BE ADDED TO THE TOTAL PRICE (including post or carriage). If wishing to call at stores, plosse tolephone for appointment.

TRANSFORMERS
 SAFETY MAINS ISOLATING TRANSFORWERS $7.0 \times 7.0 \times$ $8.9 \times 7.7 \times$ $9.9 \times 8.9 \times$ $12.1 \times 8.3 \times 1$ $12.1 \times 11.8 \times 1$ $14.0 \times 10.8 \times$ $14.0 \times 13.4 \times 1$ $17.2 \times 14.0 \times$ $17.2 \times 16.6 \times$ $21.6 \times 15.3 \times$ $23.5 \times 17.8 \times$ $35.0 \times 20.4 \times 2$ 8.0 8.6 8.6 10.2 10.2 11.8 11.8 $\times 14.0$ $\times 14.0$ $\times 18.1$ $\times 19.7$ 20.4×29.3
 k $2 \cdot 55$ 3.79 $4 \cdot 17$ $7 \cdot 30$ $9 \cdot 45$ $11 \cdot 35$ $13 \cdot 36$ $21 \cdot 05$ $27 \cdot 20$ $50 \cdot 85$ 7.53 $16 \cdot 45$ TRAM

 115 V Cains CASED AUTO TRAMSFORMERË

 E9.59. P. \& P. 80p. 1000 VA £15.92. Via B.R.S.LOW VOLTAGE TRANSFORMERS
 PRIMARY 200-250 VOLT (Secondary $2 \mathrm{~V}, 0 \mathrm{~V}, 12 \mathrm{~V}$)

Also stocked: SEMICONDUCTORS - VALVES AVOMETERS - ELECTROSIL RESISTORS

PLEASE ADD 8% FOR V.A.T, including P. \& P.

BARRIE electronics
 3, THE MINORIES, LONDON EC3N 1BJ TELEPHONE: 01-488 3316/8
 NEAREST TUBE STATIONS ALDGATE \& LIVERPOOL ST

CAPACITORS

Daly Electrolytic 9000uF $25 \mathrm{v} 50 \mathrm{p} \mathrm{p} / \mathrm{p} 15 \mathrm{p}: 500 \mathrm{~F}$ F 50 v 30p p/p 10p; TCC $16 \mu \mathrm{~F}+16 \mathrm{pF}$

Metatlised Paper rype $426100 \mu \mathrm{~F}$ 150v 50 p p/p 25p: RIC 1.8 pf 440 v 3.c. 35 p p/p 10 p
MOTOR
E.E. 3 hp 230 v . 50 c 1 ph 50 c . 1440 rpm complete with cap $80 / 100 \mathrm{uf} 275 \mathrm{~V}$
£15.50
3 phase 2HP motor 60/50c.. 1800/1500 RPM, 208/220/440v
inc. carr.
Cat. 2026391 Potter Instruments flange mounting capstan motor incl . Carriage DC 4 amp
FANS, CENTRIFUGAL BLOWERS
Airmax Type M1/Y3954 (3 blades) Cas Aluminium alloy impelter ϵ casing (corres ponds to current type $\left.3965{ }^{7 \frac{1}{3}}{ }^{\prime \prime}\right) 230 \mathrm{v}$ 425 cfm free air weight $9 \frac{1}{2} \mathrm{ibs}$. incl, p.p. £21.00.
Woods Aerofoil short casing type
$2700 \mathrm{rpm} 220 / 250 \mathrm{v} 1 \mathrm{ph} 50 \mathrm{c} 6^{\prime \prime}$ plastic mpeller incl. p.p. ©11.50.
Waods Asrofoil Code 7.5 280K $200 / 250 \mathrm{v}$ 1.0 a 1 ph 50 C 2700rpm $7 \frac{1}{2}{ }^{\prime \prime}$ impeltar 14 blados incl p.p. £13-50.
Service Electric Hi -Volocity Fans, suitable for Gas combustion Systems. Steam exhausting, Pneumatic conveying, Cooling Electronic equipment, Air blast to 575) Airblast Fan, 440 v 3 ph 50 c 0.75 ho 2850 rom continuous 160 cfm 12 in w.g. nett weight 44 ib price incl, cart, £41.00. Secomak model 350250 v $1 \mathrm{ph} 50 \mathrm{c} 0.166 \mathrm{hp}, 2800 \mathrm{tpm}$ continuous 50 cfm 2 in . w.g. net weight 34 lbs , price incl. carr. $£ 26-00$. Air Controls type VBL4 200/250v 1 ph 50 c .110 cfm free air weight $7 \frac{1}{2} 1$ bs price incl. p.p. £14-50. Type VBL5 200/250v 1ph 50c. 172 cfm free air Weigh All Als.
Wiliam Allday Alcosa Single Stage Vacuum Pump induction motor $1 / 3 \mathrm{hp}$ cont $220 / 250 \mathrm{v}$, $380 / 440 \mathrm{v}$.

Gast MFG. Vacuum pump 0522-P702-R26X Motor $110 / 120 \mathrm{v}$. A.C. 1 ph. 60 c 1725 rpm . Class E.
10cuft to 10 in Mercury in 2 mins maintains vacuum
 635 mm Mercury, Ot as compressot 10 psi int. o 15 pil cont $\mathbf{f} 25.00 \mathrm{incl}$ cat
Where p.p. not advised add 10p per E handling and post (in UK). Cash with order. Pe:sonal callers welcome.Open Mon.-Wed. 9.30-5.00 Fri.-Sat. $9.30-5.00$. Free Car Park adj. PRICES SHOWN AhE EXCLUSIVE OF V.A.T.

W. \& B. MACFARLANE

126 UXBRIDGE ROAD, HANWELL, LONDON W7 3SL

OUR PRICE $£ 3.95$ P\& P 20p

MODEL TH12 $20,000 \mathrm{opv}$. Overioad protection. Slide switch
selector. $0 / 0.25 / 2.5 / 10 /$ $50 / 150 / 1000$ V DC. $0 / 10$
$50 / 250 / 1000$ AC. $50 \mathrm{u} / 25 / 250 \mathrm{~mA}$ DC. $0 / 3 \mathrm{k} / 30 \mathrm{k} / 300 \mathrm{k} / 3$ Megohms -20 to DUR PRICE E5.95 P\&P30p

HIOKI 720X VOM

34323 MULTIMETER
$20,0000 \mathrm{pv}$. Simple
unit with wion 1 F
ameillator. Suritablo
$0.5 / 25 / 10 / 50 / 250$ /
$500 / 1000 \mathrm{~V}$ DC.
2.5/10/15/250/500/1000V AC. 0.05/ $0.5 / 6 / 50 / 500 \mathrm{~mA}$ DC. Resistance $\times 10, \times 100, \times 1,000, \times 10,000$ (60Ω Biottery opernted. Size: $160 \times 97 \bar{x}$ 40 mm . Supplied in carrying case com-
OUR PRICE 57.70
OUR PRICE E6.97 PEP30p.

PR PRICE 5.70 P30p

HIOKI 750 X VOLT-OHM-
 TMK MDDEL TW50K 46 rangs., mirror
scale. $50 \% / V \mathrm{OC}$
$50 \mathrm{k} / \mathrm{AC}$. OC Votes: $0.125 / 10$
$0.25 / 1.55 / 25 / 5 / 10$
$25 / 50 / 125 / 250 /$ 25/50/2552.5/5/1
$500 / 1020$

1250 $500 / 3000$. AC Volt
$15 / 3 / 5 / 10 / 25 / 50 /$ $1.5 / 3 / 5 / 10 / 25 / 5$
$105 / 250 / 500 /$ 25

5

 OUR PRICE £12.50 P\&P 20p

10 100 0 0 1 1 1 1 3 1 1 1 1

OUR PRICE $£ 14.95$ P\&P30p
Model HT100B4 MULTIMETER

 苟䓂

MA current:- $10 / 20 / 250 \mathrm{~A} / 2.5 / 25 / 250$ to +62 dB . Operatest: $-0-10 \mathrm{~A} .-20$
batteries. Stize $2 \times 1.2 \mathrm{~V}$ OUR PPICE $180 \times 134 \times 79 \mathrm{~mm}$.
MODEL AS. 100 D VOM
100,000 opv.
Mirror scale.
Mirror scale.
Buitt-in meter
protection. $0 / 3$ /
122/60/1200/300/
$800 / 1200 \mathrm{~V}$ DC.
$0 / 6 / 30 / 120 / 300$
$800 \mathrm{~V} / \mathrm{AC}^{20 / 300 / 10 / \mathrm{A}}$
$60 / 60 / 300 \mathrm{~m}$ $6 / 60 / 300 \mathrm{~mA} /$ $\begin{array}{ll}\text { 200k/2M/200 Mes } \\ 0 \mathrm{hm} .-20 & \text { to }\end{array}$ Ohm. -20 to 17 dB
OUR PRICE $£ 17.5$
MODEL C7202EN 20.000 o.p.v. DC.
10.0000 o. . .v. AC. 10.000 o. .b.v. $A C$
Mirror Scale. 5/25/50/250/500 100050/100/500/1000 10/50/100/500/1000
V.AC.DCResistance $\times 10, \times 1000(30 \Omega$ centre scale) DC Current 50 uA /
$2.5 \mathrm{~mA} / 250 \mathrm{~mA}$. -20
to +68 dB .
OUR PRI

KAMODEN HM720B FET VOM

KAMODEN 360 MULTIMETER High sensitivity:
DC $100 \mathrm{kohm} / \mathrm{V}$
${ }^{\mathrm{AC}} \mathrm{5}^{\prime \prime}$ 10kohm/V $5^{\prime \prime}$ mirror scale, overioad protect-
ed. Ron ges $0.5 /$
$2.5 / 10 / 50 / 250 /$ $2.5 / 10 / 50 / 250 /$
1000 V oc. $5 / 10 /$
$50 / 250 / 100 \mathrm{~V}$ AC. Current:
$0.01 \mathrm{~mA} / 0,5 / 5 / 50$ / $0.01 \mathrm{~mA} / 0,5 / 5 /$
$500 \mathrm{~mA} / 10 \mathrm{~A}$.

0 | Resistance: $0.1 /$ |
| :--- |
| $1 / 10 / 100$ ohms |
| |
| 10100 . | $1 / 10 / 100 \mathrm{ohms}$ ohms/

10/ 100 M ohms.
Decibels -20 to
Decibets - 20
+620 ate.
140 Btter $140 \times 80 \mathrm{~mm}$.
test leads etc. OUR PRICE £17.50 P\&P40p
TMK MDDEL 117 FET ELECTRONIC VOLTMETER
Battery operated.
11 Meg input, 26.
ranges. Large 4/4/',

mirror scale. Size:
$149 \times 117 \times 60 \mathrm{~mm}$

$0.3 \times 120000 \mathrm{~mm}$.
$3-300 \mathrm{OMMS}$.
$8-800 \mathrm{VMS}$ P. AC.
DC current $0.12-$
12 mA . Resistence

+51 dB , Supplied complete with leads
OUR PRICE
P\&P 20p
TMK 100K LAB TESTER
100,000 opp. $61 /{ }^{\prime \prime}$
scale. Buzzer
scale. Buzzerr
short
Sensiritivit check.
Sensitity 100,000
Sensitivity 100,000
op $\mathrm{DC}, 5 \mathrm{k} / \mathrm{V}$ AC
DC Vois: 0.52 .5
10.50 .
10/50/250/1000V
AC. $3 / 10 / 50 / 250 /$
$500 / 1000 \mathrm{DC}$
current 10/100uA

$10 / 1000 / 2.5 / 10 \mathrm{~A}$. Resistence:
$1 \mathrm{k} / 10 \mathrm{k} / 100 \mathrm{k} / 10$.
Decibes: -10 to +49 dib. Plastic case
with carrying handle. Size: 190×172
$\times 99 \mathrm{~mm}$.
$\times 99 \mathrm{~mm}$.
OUR PRICE f 19.95 P\&P 30p
370WTR MULTIMETER
Features $A C$ current
ranges
ranges
$0,20.5000$ apv
$0.5 / 2.5 / 10 / 50 /$
$0 / 0.5 / 2.5 / 10 / 50 / \mathrm{DC}$
$250 / 500 / 1000 \mathrm{D}$
$0.25 / 10 / 50 / 250 /$
$50.100 / \mathrm{V}$
$500 / 1000 \mathrm{~V}$ AC.
$0 / 50 \mathrm{AA} / 1 / 10 / 100$
$\mathrm{mA} / 1 / 10 \mathrm{ADC}$.
$0 / 100 \mathrm{mAA} / 1 / 10 \mathrm{~A}$
$\mathrm{AC} .0 / 5 \mathrm{k} / 50 \mathrm{k} / 500$
AC. $0 / 5 / 5 / 50 \mathrm{k} / 500 \mathrm{k} / \mathrm{C}$
$5 \mathrm{Mag} / 50 \mathrm{Meg}$
Docibels:
OUR PRICE E19.95 P\&P 30p
KAMODEN 72.200 Multitester

OUR PRICE E22.50 P\&P 30p
U4317 MULTIMETER
High sensitivity
instrument for field
and
Knoboratory work

Knife edge pointer,
86 mm , mirror scale.

Overload protection.
Ranges: 100 mV /
$0.515 / 5 / 10 / 25 / 50$
V.512.5/10/25/50/100/250/500/1000 $\mathrm{VDC} .0 .5 / 2.5 / 10 / 25 / 50 / 100 / 250$ $1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 \mathrm{~A}$ DC. 0.25 $0.5 / 1 / 5 / 10 / 50 / 250 \mathrm{~mA} / 1 / 5 A \mathrm{AC}$. Re5 istance: $0.5 / 10 / 100 / 200$ ohms $1 / 1 / 3 \mathrm{j}$
$30 / 300 \mathrm{k}$ ohms. Decibete 30/300k ohms. Decibels: -5 to +10 dB
Eattery
operated.
Size:
$210 \times 115 \times$ 90 mm , Supplied in carrying case com-
PUR PRICE $£ 16.50$ P\&P 40p
MODEL C720BFM
30,000 opv DC.
15,000 opv AC.
15.000 opV AC.
$6 / 3 / 15 / 60 / 300 / 600$
$1200 \mathrm{~V} . \mathrm{DC} .6 / 30 / \mathrm{F}$
120/600/1200 V. AC
10.
(50Ω centre scale)
DC Current 30uA)
OUR PRICE 88.95

MODEL U4311 Sub-standard Multi-range Volt-Ammeter Sensitivity ${ }^{330}$
Ohms $/$ Oots AC

MODEL AF. 105 VOM
$50,000 \mathrm{opv} . \mathrm{M}$
scale. Meter
scale. Meter
protection.
$0 / 3 / 3 / 12 / 60$
protection.
$0 / 3 / 3 / 2 / 60 / 120 /$
$300 / 600 / 1200 \mathrm{~V}$ DC. $300 / 600 / 1201$
$0 / 6 / 30 / 120 /$ $300 / 600 / 1200 \mathrm{VDC}$. $0 / 30 \mu \mathrm{~A} / 6$
$60 / 300 \mathrm{~mA}$
12 Amp. $0 / 10 \mathrm{~K}$
$1 \mathrm{~m} / 10 \mathrm{~m} / 100$

£3.95 P\&P 20p
LB4 TRANSISTOR
TESTER
Tests PNP or NPN
transistors rrangistors. Audio
indication. Operates
on on two 1.5 V $^{\text {on }}$
batteries. Complate bateries. Complate
with instructions etc. DUR PRICE
£4.50 P\&P 20p
KAMODEN TT35
TRANSISTOR TESTER High quality
instrument instument to
test revers helak
current and DC current. Amplification factor of
NPN, $P N$, diodes
 stc. 4" $^{\prime \prime}$ square
clear scale clear scall meter.
Operates from Operates from Complete with instructions, leads

OUR PRICE $\mathbf{f} 17.5$
U4341 Multimeter \&
Transistor Tester 27 ranges. $18,700 \mathrm{opv}$.
Overioad protectid. Range: 0.3/1.5/6/ $30 / 60 / 150 / 300 / 900 \mathrm{~V}$
$0 \mathrm{C} .57 .5 / 7.5 / 30 / 150 /$ $300 / 750 V \mathrm{AC}$. 6/50/600mA DC,
$0.3 / 3 / 30 / 300 \mathrm{~mA} A C$ Resistance: 0.06/ Battory operated. Suphtied Mohms. with probes, loads and stoll carrying
case. Size: $115 \times 215 \times 90 \mathrm{~mm}$ OUR PRICE E10.50 P\&P 30p
STOOTR MULTIMETER
TRANSISTOR TESTER
100,000 opy. Mirror
ccale. Overload
protection. 0/0.121
$0.6 / 3 / 12 / 301201$
$600 \mathrm{VCO} 0 / 6 / 30$ /
$120 / 600 \mathrm{AC}$ AC.
$0 / 12 / 600 \mathrm{~A} / 12$
$3 / 12 / 600 \mathrm{AA} / 12 /$
$300 \mathrm{~mA} / 6 / 12 \mathrm{~A}$
$0 / 10 \mathrm{k} / 1 \mathrm{Meg}$
100 meg
-20 to +50 dB
$0.01-0.2 \mathrm{MFD}$
0.01-0.2MFD

Transistor tester measures Alphs, Beta
and ICO. Complete batteries and leads
OUR PRICE £19.95
P\&P 25p
SWR METER Model SWR3
Handy SWR meter for
transmitter antenna align
transmitter antenns slign-
ment, with built-in field
mont, with built-in field
strength metor. Accurscy strength metor. Accurncy
5%, mpeodance 62^{2} indic-
3 ator $1004 A$ DC, Full
ator 1000 A DC. Full
scale 5 section colfapsibla
antenna. Size $145 \times 50 \times$
antonna.
60 mm .
OUR PRICE £4.25 P\&P 30p
ALL PRICES EXCLUDE VAT
Also see following pages

CI5 PULSE OSCILLOSCOPE

$1-3000 \mathrm{~s}$ sec. Free running 20-200
kHz in
220
inine ranges. Calibrator pips. $220 \times 360 \times 430 \mathrm{~mm}$. $1155-230 \mathrm{~V}$ AC.
OUR PRICE $\mathbf{4 3 3 . 0 0}$ Carr. paid
 P\&P 30p TRANSISTORISED L.C.R. A.C. BR/B: MEASURING BRIDGE
 RING BRIDGE
A new oprable
brideo offering
oxecellient range and
occurcy a low
cost. Resistance: cost. Resistance
6 ranges:
0.1
and
and
ohm- 11.1 megohm $\pm 1 \%$ Induct.
ance: 6 ranges: 1 microherry 111
honries $\pm 2 \%$ Capacity 6 ranges henries $\pm 2 \%$ Capacity: 6 ranges:
10pf- $1110 \mathrm{mfd} \pm 2 \%$ Turns Ratio: 6 ranges: 1:1/1000-1:11100 Bridge Voltage at 1.000 cps . Operated from 9 -volt battery. 100 micro$5^{\prime \prime} \times 2^{\prime \prime}$ QUR PRICE £25.00 PEP 30p

TE16A TRANSISTORISED

SIGNAL GENERATOR

 OUR PRICE £8.97 P\&P 30p

GENERATDR

Accuraté wide ran
signal generator cignes generator
covering 120 kHz
MHz on 6 bands Directly callbrated

Variable R.F.

attenuator audio output, Xtal socket
for calibration. 200 for calibration. $220 / 240 \mathrm{~V}$.
Brand new with instructions.
Sire $140 \mathrm{~mm} \times 215 \mathrm{~mm}$ tions.
OUR PRICE $£ 17.50 \quad$ P\&P 50 p
TE22 SINE SQUARE WAVE AUOIO GENERATOR Sine 20cps
to 200 chtr
on 4 band
Square
Square
Square 20
cpHz 20
kHz , Outp

impadience 50000 Ohms. $200 / 250 \mathrm{~V}$.

AC operation. Supplied brand new guarrateed, with instruction manual
OUR PRICE £24.95
ARF 300 AF/RF SIGNAL
AENERATOR
All transistorise
compact fully
portabbe $A F$
w.ve $18 H z$ to 220
kHz. $A F$
kHz . AF square
wave 18 Hzz to 100 k
Hz . Output Square! Sine wive 10 V ,
P. $\mathrm{P}_{\text {RF }}$ 100 kH ,
P. PRF RF 100 kHz to
200 MHz . Output

1Vmaximum.
$220 / 240 \mathrm{~V}$ AC
with instructions and tliands.
OUR PRICE E 37.50 P\&P 50p

 $220,000 \mathrm{~Hz}$ Sine Wave 19-100.000 H2 Squara Wove.
Output Sine or Square wave 10 V P. to Size $180 \times 90 \times 90 \mathrm{~mm}$.Operation 220/240. A. 19.95
OUR PRICE $£ 19.95$

P\&P 50p
 High quality 2 way. speaker sstems.
25 Waits. $4-8$ ohms. $40 \mathrm{~Hz}-18 \mathrm{kHz}$. Size: $560 \times 340 \times 25 \mathrm{~mm}$. 2 pprox.
Wood 9 orain finish with black fronts. OUR PRICE 222.50 PR. P\&P £ 1
 25 WATT $10 / 25 / 50 / 100 / 500 / 1000$ / 2500 ohms. $\mathrm{f} 1.15 \mathrm{P} \mathrm{\& P}$ P 10 p 50 WATT 10/50/100/250/500/
£1.62 P\&P 10p 100 WATT 1/5/10/25/50/250/500/ 2500 ohms. 500 Ohms
£2.34 P\&P 15p
EMI LOUDSPEAKERS Model $35013 \times 8^{\prime \prime}$ with
singie twoesterferossover.
20-
20000 single tweterer/r 15 sover.
$2020,000 \mathrm{~Hz}$. 15 watts
RMS. Availebe RMS. Available 8 or
15 ohms 15 ohms.
OUR PRICE
£7.50 asch P\&P 37p Model $45013 \times 8^{\prime \prime}$ with twin tweater crossover.
$55-13000 H z 8$ watt.
RMS Available OUR PRICE £ 3.62 each P\&P 35 p

PS200 Regulated POWER
SUPPL Y UNIT

OUR PRICE £19.95

AUDIOTRONIC LE-102A
INTERCOM

Beautfully made and finished in useful in the home, office or shop and is suitable for use as baby
alarm. Wall or desk mounting alarm. Walt or desk mounting 57 mm speaker/mic gives clear 2 .
way communication with on/off way communication with on/of
and volume control on master unit. Operates on 9 V batt. Approx 60ftlead.
OUR PRICE $\mathbf{f 3 . 9 5}$ P\&P30p
TRITON 4318 PORTABLE
8 TRACK CARTRIDGE
PLAYER WITH MW/LW
RADIO
Will plays
track stereo
cartridge
monaurally.
Channel
selector
selector
switch. Covers
medium and long wave
medium and long wave Earphone socket. Battery/Mains operation.
OUR PRICE $£ 11.95$ P\& P 50p
 depth of reverberation control. Bessu-
walnut cabinet. $184 \times 77 \times 108 \mathrm{~mm}$. OUR PRICE E7.50 P\&P 30 p

SPECIAL OFFER! CONVERT YOUR STEREO SYSTEM
TO 4D SOUND

Exclusive offer of GOODWIN 4. CHANNEL CONVERTER and a pair of AD15 10 watt 8 ohm bookshelf speakers enables you to add 4D sound to your existing system. Complete with simple connection QUR PRICE $15.80 \mathrm{P} \& \mathrm{P} £ 1$. GOODWIN CONVERTER available separately $£ 3.95$ P \& P 50p
Madel A1018
FM TUNER

For use with most amplifiers. Covers $88-108 \mathrm{MHz}$. Powered by 9 V battery. OUR PRICE E13.50 P\&P 30p

'ELECTRONIC CALCULATORS

We carry a tremendous range of tors from as little as $£ 9$. Owing to the demand it is not possible to include them in this advertisement, so send for our latest price list or call into any

SINCLAIR SYSTEM 2000

 STEREO AMPLIFIER AND TUNER

2000 AMPLIFIER
Amplifier output 8 watts per
channel RMS. Distortion less than channel RMS. Distortion less than pick-up plus radio and tape inputs tape output and scratch filter, Excellent Value. List $£ 39.95$ OUR PRICE £27.50 P \& P60p.

2000 FM TUNER

Excellent selectivity and sensitivity. Twin dual-varicap tuning. stereo demodulator giving 40 dB separation. Distortion $0 \cdot 2 \%$ output. Fantastic Value. List $£ 39.95$ OUR PRICE $\mathbf{~} 27.50 \mathrm{P} \& \mathrm{P} 60 \mathrm{p}$.
SINCLAIR ICI2
INTEGRATED
CIRCUIT
AMPLIFIER
printed circuit
OUR PRICE £1.50

SINCLAIR Project 80 Modules
Z40 PowerAmp. $\quad 55,95$ P\& \& 15 p

FM Tuner
Stereo Decoder
PZ5 Power Supp
PZ6 Power Supply
PZB Power Supply
 SINCLAIR Project 80 Pack

AE1 100 mW output st
AE3 Diode receiver
AE4 Flasher.
AE6 Monostable multi-vibrator
AE8 Bass filter.
AE9 Treble filter

Double tuned
discriminator.
Ample output to feed most amplifiers. Operates on $9 V$ battery. Covers $88-$
$10 B M H z$. Ready built, ready for use. for mone
OUR PRICE £8.95

TE1021 Stereo Listening Station
For balancing
and gain selection of loudspaskers
with additional facility for storeo headphone
 gain controls, speakors on-off slide DUR PRICE E22.25 PEP 15p AUDIOTRONIC

L0			
TYPE	5	10	25
C60	61.67	E3.00	¢7.08
C90	£2.24	£4.25	£10.00
C120	£2.73	£5.17	£12.24

AUDIOTRONIC

8 TRACK CARTRIDGES
$\begin{array}{llll}\text { TYPE } & \text { Each } & 5 & 10 \\ 40 M & 85 p & £ 4.00 & £ 7.50 \\ 80 M & £ 1.15 & £ 5.40 & £ 10.25\end{array}$ P\&P Cassettes 3p, Cartridges 5p aach
OVER 10 of either POST FREE!
MP7 MIXER-PREAMPLIFIER
5 Microphone
inputs sech with
individual gain
controls enablin
666662

complote mixing

faciilities. 8 attory oparated. Size: 235
$\times 127 \times 76 \mathrm{~mm}$. Inputs: Mic: $3 \times 3 \mathrm{mV}$ $\times 127 \times 76 \mathrm{~mm}$. Inputs: Mics. $3 \times 3 \mathrm{mV}$
$50 k ; 2 \times 3 \mathrm{mV} 800$ ohms. Phono. Mer.
$4 \mathrm{mV} 50 \mathrm{~m} ;$ Phono Ceramic 100 mV ; 100k OUR PRICE E8.97 P\&P 20p AUDIOTRONIC AHA101 Sterea Headphone Amplifier All silicon,
transistor

twin stereo headphone outputs and separate
volume controls for for sach channel. Operates from $9 V$ battery.
INPUTS:
5 mV and 100 mV OUTPUT: 50 mV per channel
OUR PRICE £8.50 P\&P 30p

$--\sqrt{W} w$	HIGH QUALITY CONSTRUETION
KITS	
JOSTYKIT	
WE ARE	
APPOINTED	
STOCKISTSAT	
ALL BRANCHES	

All kits are complete with compro-
hensive easy to follow instructions and hensive easy to follow instr
covered by full guarantee.
Post and Packing $15 p$ per kit.

AF20 Mono amplifier...
AF 25 Mixer................... AF35 Emitter amplifiet. AF 305 Intercom..............
AF 3102 Mono Amplifier M160 Multi-vibrator M1302 Transistor test M191 VU Meter
M192 Stereo bal
LF380 Quadraphonic devic. ATS Automatic light control. AT30 Photo cell switch unit.
AT50 400W triac light dimmer/speed control.
dimmer/speed control.......
AT60 1 channel light control.
AT65 3 channel light AT65 3 channel light control.. E10 16.52 GU330 Tremolo unit. HF65 FM transmitter
HF310 FM tuner..
HF335 Deluxe FM tuner....... £ $£ 26.32$
HF330 Decoder IHF310/325i $£ 10.55$ GP310 Stereo pre-amplifier
GP312 Circuit board.
HF380 lw/vhf aerial HF395 broadband aerial amp
NT10 Stabilisad NT10 Stabilised power supply NT300 Stabilised p, supply..... $\begin{array}{r}\text { £ } 6.27 \\ £ 13.16\end{array}$ NT310 Power Supply 240 V AC
or $2 \times 18 \mathrm{~V}$ D.C. at 2 amps NT305 Voltage converter...

Amateur Electronics by Josty-Kit, the professional book for the amateur
-covers the subject from basic principals to adivanced electronic techniaues. Complate with circuit board
AE1 to AE 10 listed below. OUR PRICE $£ 3.30$ [No VAT

SEW PANEL METERS SEW PANEL METERS ARE STOCKED AT OUR 3 LISLE ST., 311 EDGWARE RD.. \& 152 FLEET ST..BRANCHES or order by post.

USED EXTENSIVELY BY INDUSTRY, GOVERNMENT DEPARTMENTS, EDUCATIONAL AUTHORITIES ETC. Over 200 ranges in stock-other ranges to order. Ouantity discounts available. Send for fully illustrated brochure.

CLEAR PLASTIO MODEL SD640

CLEAR PLASTIC MODEL SW100 Size: $100 \times$ BOTM

EDGWISE MODEL PE7A

2004 5004 a $60-0.50 \mathrm{u} A$ $100-0.100 \mathrm{u} A$ $00-0.100 \mathrm{uA}$. $\operatorname{limA}_{300 V}$ ÄC.. VUMeter..
 74.15 $-\quad 54.10$

MODEL ED107 EDUCATIONAL METER
A range of high quality moving coil instruments deal for school experiapplications. $3^{\prime \prime}$ mirror cale. The meter movement is sasily accessible working.
$50 \mathrm{u} A$. 50-0.50 $50-9.50 \mathrm{uA}$
1 mA
$1-0-1 \mathrm{~mA} .$. $1 \begin{aligned} & 1-0-1 \mathrm{~mA} . . \\ & 1 \mathrm{DC}\end{aligned}$ $\begin{array}{ll}1 A D C & . \\ 5 A D C & . \\ 5 V D C & . \\ 10 V D C & . . \\ 15 V D C & \end{array}$ CLEAR PLASTIC MODEL MR 85P

CLEAR PLAST Size: $50 \times 50 \mathrm{~mm}$

240° Wide Angle
1 mA METERS
MW1-6 $60 \times 60 \mathrm{~mm}$ E6.50 P \& P 15p

YAMABISHI VARIABLE
VOLTAGE TRANSFORMERS Excelient quality at low cost. Input:
$230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Output $0-260 \mathrm{~V}$. MODEL SZ60 BENCH MOUNTING

MODEL SZ60 BENCH MOUNTING P\&P		
$\begin{array}{r} 1 \mathrm{~A} \\ 2.5 \mathrm{~A} \end{array}$	f10.50 $\mathrm{E} 12.00$	
5A	£17.56	50 p
8 A	E30.35	¢1.00
10A	£33.75	E1,00.
12A	£ $\mathbf{3 6}$. 40	${ }^{2}+00$
20A	f85.00	£1.50
25A	C95.00	£1.50 先相
40A	£120.00	E1.50
MODEL S2608 PANEL MOUNTING		
2.5 A	£12.00	50p

TO LASKYS CUSTOMER SERVICES DIVISION
Audiotronic House, The Hyde, London NW9 6JJ. Tel:01-200 1321
Please send me the following items

MAIL ORDER

TOTAL PURCHASE PRICE

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
CLEAR PLASTIC M0DEL SD460 \\
Size: \(59 \times 46 \mathrm{~mm}\)
\end{tabular}} \\
\hline 50uA \& E3.60 \& \\
\hline 100uA - - \& ¢3.45
\(\mathbf{6 3 . 4 0}\) \& \\
\hline 500uA .. ". \& ¢3,
\(\mathbf{8} 3.35\) \& \\
\hline \(50-0.50 \mathrm{~A}\)
\(100-0.100\).
a \& 53.45
63.40 \& \\
\hline 1 mA .. \({ }^{10 .}\) \& 13.40
\(\mathbf{8 3}\) \& \\
\hline \(5 \mathrm{~mA} \times . . .\). \& ¢3.30 \& \(z\) \\
\hline \(10 \mathrm{~mA} . . . \quad \because \quad\). \& 83.30 \& \\
\hline \& 63.30
63.30 \& 10 V DC \({ }^{\text {c }}\) \\
\hline 100mA \& 63.30
\(\mathbf{6 3 . 3 0}\) \& \(20 V\) DC
\(50 V\)

PC

\hline 1ADC \quad - \quad. \& \$3.30 \& $300 \mathrm{VDC}$.

\hline 5ADC \& ¢3.30 \& $15 V A C$..

\hline 10ADC \& \$3.30 \& 300V AC..

\hline 5V DC \& 53.30 \& VU Meter ..

\hline
\end{tabular}

CALL INTO YOUR NEAREST LASKY S BRANCH OR SEND COUPON BELOW FOR NEW 16 PAGE HI-FI PRICE LIST

CENTRAL LONDON

481 OXFORD ST.
3 LISLE ST. WC2
34 EDGWIARE RD. W2
1183 EDGWME RD W2
193 EDGWARE RD. W2
207 EDGWARE RD. W2
3II EDGWARERD. W2
346 EDGWARE RD. W2 $01-2620357$
346 EDW
382 EDGWARE RD. W2 $01-7234453$ $\begin{array}{ll}109 \text { FLEET ST. EC4. } & 01-3535912 \\ 152 / 3 \text { FLEET ST. ECA } & 01.35321133\end{array}$ $\begin{array}{ll}10 \text { TOTTENHAM CT. RD. } & 01-6372232 \\ 27 \text { TOTTENHAM CT. RD. } & 01-6363715 \\ \text { 33 TOTR }\end{array}$ 33 TOTTENHAR CT. RD. O1-636 2605 257/8 TOTTENBAM CT. RD. OI- 5000670

ESSEX

205/206 CHUNTCHILL WEST, 070261224 VICTOMIA CIRCUS, SOUTHEND

KENT
53/57 CAMDEN MD., TUNARIDGE WFLLS
COF2-13242
LEICESTERSHIRE
45 MARKET PLACE, LEICESTER
O533-53767!
NORTHAMPTONSHIRE
73 APMGTON STREE,
NORTHAMPTON (Opening Novembar)

STAFFORDSHIRE
30 WULFREI I WAY, WOLYERHKMPTON
How Opan
SURREY
1046 WHITGIFT CENTRE, CROYOON

$\begin{array}{ll}27 \text { EDEN ST. KIMGSTOM } & 01-681302 \\ 01-5467845 \\ \text { 39/40 EDEN ST. KINGSTON } & 01.546127\end{array}$ | 38/40 EDEN ST., KINGSTON | 01-546 127 |
| :--- | :--- |
| 32 HILL ST. FICHMOND | $01-944$ |

WARWICKSHIRE

I 16 CORPORATION ST., BIRMINGHAM
$021-2363500$

OUR CUSTOMER SERVICES DIVISION at heral nffice will answer all Your earquaries -
 bust rimg 01-200 1321

EXPORT p

 NO OEPOSIT TERMS for personal callers

CHEQUES TO THE VALUE OF E3O.
ACCEPTED FROM PERSOUAL SHO ACCEPTED FROM PERSONAL SHOPPERS
WITH BAMRERS CARD, IN OTHER CASES AND FOR A MOUNTS IM EXCESS OF E30. please allow time for clearance. Bankers drafts accepten.
All prices correct at $1,10 / 74$ but
subject to change without notice E.\&O.E
Auamber of the
Audiationic Group of Companies

AMPLIFER KITS OF ஜistinction

DESIGNER-APPROVED KIT

In Hi-Fi News there was published by Mr Linsley-Hood a series of four articles (November 1972-February 1973) and a subsequent follow-up article (April 1974) on a design for an amplifier of exceptional performance which has as its principal feature an ability to supply from a direct coupled fully protected output stage, power in excess of 75 waits whilst maintaining distortion at less than 0.01% even at very low power levels. The power amplifier is complemented by a pre-amplifier based on a discrete component operational amplifier referred to as the Liniac which is employed in the two most critical points of the system, namely the equalization stage and tone control stage. positions where most conventional designs run out of gain at the extremes of the frequency spectrum. Unusual features of the design are the variable transition frequencies of the tone controls and the variable slope of the scratch filter. There is a choice of four inputs, two equalized and two linear, each having independently adjustable signal level. The attractive slimline unit pictured has been made practical by highly compact PCBs and a specially designed Toroidal transformer.

Hi-Fi News Linsley-Hood 75 W Amplifier
Mk III Version (modifications as per Hi-fi News April 1974)

Full circuit description
in handbook
(pack 15-price 30p)

Pack
Fibreglass printed-circuit board
for power amp. Set of resistors, capacitors, pre-sets Set of semiconductors amp. fnow using, BDY56. 8D529, 80530)

Price
£ 0.85 E1.70

Pair of 2 drilled, finned heat sinks
foreglass pre-amp.
frod
Set of low noise resistors, capacitors, pre-sets for pre-amp.
Set of low noise, high gain semicon-
ductors for pre-amp.
mat of potentiometers (including
mains switch)
mains switch)
of 4 push-button switches,
rotary mode switch
Toroidal transformer complete
with magnetic screen/housing primary:
0-117-234 V, secondaries:
$33-0-33 \mathrm{~V}, 25-0-25 \mathrm{~V}$.

11 Fibreglass printed-circuit board
12 Set of resistors supply. resistors, capacitors,
secondary fuses, semiconsecondary fuses, semicon-
ductors for power supply
13 Setof misceilaneous parts including DIN skts, mains
input skt, fuse holder, interinput skt, fuse holder, inter-
connecting cable. control connecting cable, control
4 Set of metalw
metalwork parts including panel and all brackets, fixing parts, etc.
15 Handbook 2 each of packs $1-7$ inclusive are required for complete stereo system Total cost of individually purchased packs

FREE
TEAK CASE WITH FULL KITS $£ 62.40$ KIT PRICE only 2

¢0. 65

E3.50
V.A.T. Please add 8\%*
to all U.K. orders
(*or at current rate if changed)

POWERTRAN

"SLO-SYN" 3-LEAD SYNCHRONOUS STEPPING MOTOR

Type SS15. These fine motors are easify reversed, starting and stopping in less than 5° without electrical or mechanical braking. Simple relay circuit can be appilied to give DC., to winding tor a maximum holding torque of
 per revolution with accuracy of 0.10 per step non-cumulative. Torque characteristics can be

OPEN FRAME

shaded pole
GEARED
MOTORS
(Dural
240 AC., gear
28rpm.
ease)

 110 rpm with pressed steel gear case (si.
but slightly smaller). E3. P. \& P. 30 p.

CARTER ELECTRIC

Similar to above with alloy gear casp. 60 r.p.m. This
tem is ex-equipment but perfoct. $\varepsilon 1.95$. p \& p 30p.
SMITHS RINGER-TIMER Rellable 15 minute times, spring wound
(concurrent with time setting) 15×1 min (concurrent with time setting)
divisions, approximately
$\frac{1}{2}$
Getween divisions. Panel mounting with chrome
bezel $3 \%^{\frac{\pi}{2}}$ dia. $£ 1-40$. $15 p$. P, P. bezel $3 \frac{3}{7}$ dia. $£ 1$-40. 15p. P. \& P.

FEW ONLY

Fully stabilised "Labgear" Power Suppty Unit, Input Hum and ripple at full ioad-less than 3 MV peak to. peak, Stability improvement ratio for 1.5% mains $91^{1} \times 91^{\prime \prime} \times 12 i^{1 /}$. Weight 20216. \&26.00. Carr. \& Pkg
"LABGEAR ELIMINAC P.S.U. $200-250 \mathrm{v}$. $40 / 60 \mathrm{~Hz}$, Alternative outputs fully
variable (variac incorporated). Output 1.12 y at 5 za
D.C. fully smoothed. Output 2 . 12 y at 8 a D.C., with
 $0-20 v$ D.C. m/c meter. In attractive grey hammer finish
case. In maker's carton. £27.50. Carr. \& Pkg. $£ 1.50$.

SHADED POLE MAINS MOTOR

 SOLENOIDS by WESTOOL

 each. P. \&. . 10 p . Quantity
discounis. $10-5010 \%$. 0 up-
wards 25%.

MAINS

SOLENOID
This little unit sives vertical ifitof approxi-
mately mately $1^{1 "}$ through
 Bracket incorgorates 2 fixing screws. Lenath of arm 2v. 240 V AC. Pull at coil is approximately 11 b . E1. AMPEX 7.5v. DC MOTOR
An ultra, precision tape motor designed for use in the A G 20
portable
 Draws bema on run. 600rpm
speod
adjustment. internai

 quantities available (special quotations).
enclosure available, 750 each. FREEP. Δ.

ULTRA PRECLSION

 CENTRIFUGAL BLOWERby Air Control Ltd.
30 segments inlividually balanced in

running. 55° dia. 3° inlet dia, Outlet flange $3^{*} \times 21^{*}$.
Limited number only $88.95{ }^{\mathrm{P}} \mathrm{P} \mathrm{P}$. P .
SILVANIA MAGNETIC SWITCH
Now complete with reference magnet!
A magnetically activated switch, vacuum sealed in a giass envelope. Silver contacts, normalty clozed, Rated 3amp it inal for burgatar alarms, security systems etc., and where-

NORPLEX

The famous American fibre-glass copper-clad laminate. Finest quality with, woven glass base of Epoxy-resin, Excellent Mech. and Elec. conductlve properties. Heat resistant, Ideal for P.C.' elc. THIS IS A
SPECIAL PURCHASE AND ONLY AVALABLE WHILE STOCKS

 additional sheet.

FAN BLOWER
Precision-bulit in Germany. Dynamically balanced mains untt (200/240) continuous ated, reverslble 60MA on
run. size: $5 z^{\prime \prime}$ dia. $\times 27^{\circ}$ run. Size: 5 de dia. $\times 2 \%$
deep. Back piate Is tapped
for 4 fixing scraws plied). Well under maker'3 price at $£ 3, P, \&$ P. 20 p . Similar unit to above but $7 \frac{11^{\prime \prime}}{}$ dla. $\times 3^{4}$ deep. $84 \cdot 50$.

ALL PRICES INCLUDE V.A.T.
Whilst we welcome official orders from established companies and Educational Departments, it is no longer practical to involce goods under

FROM THE SPECIALISTS-POWERTRAN
 \section*{WIRELESS WORLD AMPLIFIER DESIGNS} ELECTRONICS

Component packs for a choice of three outstanding amplifiers are stocked together with packs for a regulated power supply suitable for use with a pair of any of them. Also stocked are packs for a very well-established pre-amplifier-the Bailey-Burrows design which features six inputs, a scratch and rumble filter and wide range tone controls which may be either rotary or slider operating.

30W BAILEY

Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots
Pk. 3 Semiconductor set
30W BLOMLEY
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set 20W LINSLEY-HOOD
Pk. 1 F/Glass PCB
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set

GOV REGULATED POWER SUPPLY Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pots Pk. 3 Semiconductor set BAILEY-BURROWS PRE-AMP
Pk. 1 F/Glass PCB
Pk. 2 Resistors, capacitors, pre-sets, transistors
Pk. 3R Rotary potentiometer set
Pk. 35 Slider potentiometer set (with knobs)
£0.75
£1.40
£3.10
$€ 2.05$
$£ 4.95$
£1.60
£2.70

STUART TAPE RECORDER

A set of three printed-circuit boards has been prepared for the stereo integrated circuit version of this highperformance Wireless World published design.

TRRP Pk. 1	Reply amplifier F/Glass PCB	£0.90
TRRC Pk. 1	Record amp./meter drive cct. F/Glass PCB	£1.40
TROS Pk. 1	Bias/erase/stabilizer cot. F/Glass PCB	£1.00

TOROIDAL T20 +20
Developed from the famous Practical Wireless Texan

Designed by Texas engineers and published in a series of articles in Practical Wireless. The TEXAN was a remarkable breakthrough in delivering true $\mathrm{Hi}-\mathrm{Fi}$ performance at exceptionally low cost. Now further developed to include a true Toroidal transformer. this slimline integrated circuit design, based upon a single F/Glass PCB, features all the normal facilities found on quality amplifiers, including scratch and rumble fitters, adaptable input selector and headphones socket.

FREE

TEAK CASE and HANDBOOK with full kits

ACTIVE FILTER CROSSOVER

An essential and critical component in a high-quality speaker system is the crossover unit conventionally comprising of a series of passive networks which unfortunately, though introducing reactive impedances between the amplifier and the speakers, result in the loss of the advantage of high impedances between the amplifier and the speakers, result in the loss of the advantage of high
amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant amplifier damping factor and renders the speakers prone to overshoots and resonances. An elegant
solution to this problem, described by D. C. Read in Wireless World, involves the use of a series of active filters splitting the output of the pre-amplifier into three channels, of closely defined bandwidth, each of which is fed to the appropriate speaker by its own power amplifier. A design for a suitable 20 -watt amplifier, based on a proven Texas circuit, was also described by Mr Read. The printed-circuit board for this has been designed such that three amplifiers may be stacked and mounted together on a common heat sink to achieve a conveniently compact module.

ACTIVE FILTER

1 Fibreglass PCB (accommodates all filters for one
2 channel)
tantalum capacitors metal oxide resistors, 2% polystyrene capacitors 3 Set of semiconductors 2 off each pack required for stereo system

SUITABLE ALSO FOR FEEDING ANY OF OUR HIGH-POWER DESIGNS

READ/TEXAS 20wamp.

Pack
1 Fibreglass PCB
£1.05
2
Set of resistor tors pre-sets , capaciing 0/P coupling capa-
3 Citors) Sets of semiconductors £4.20 6 off each pack required for stereo £2.65 system

4 Special heat sink as-
sembly for set of 3
amplifiers Sot coupling capacitors
off packs 4,5 required for stereo system

POWER SUPPLY
FOR 2OW/CHANNEL STEREO
£0.70. SYSTEM
Pack
$\begin{array}{lll}£ 1.10 & 1 & \text { Fibreglass PCB } \\ 2 & \text { Set of rectifiers }\end{array}$
$£ 0.50$
diode, capacitors, fuses
fuse holders
Toroidal transformer
$£ 0.85$
£1.00 Fon quality sets of eneake
For quality sets of.speakers

SEMICONDUCTORS AS USED IN OUR RANGE OF QUALITY AMPLIFIERS

2N699	¢0.25	2N4302	£0.60	BC182L	80.10	MJ481	£1.20	TIP29C	20.71
2 N 1613	£0.20	2N5087	¢0.42	BC184L	¢0.11	MJ491 +	E1.30	TIP30C	80.78
2N1711	¢0. 25	2N5210	£0.54	BC212L	¢0.12	MJE521	± 0.80	TP31A	20.60
2N2926G	20.10	$2 N 5457$	£0.45	BC214L	± 0.14	MPSA05	¢0. 30	TIP32A	20.70
2N3053	20.15	2N5459	100.45	BCY72	¢0.13	MPSA12	£0. 55	TIP33A	c1.00
2N3055	20.45	2N5830	£0.30	BD529	£0.85	MPSA14	\&0.35	TIP34A	£1.50
2N3442	E1. 20	40361	£0.40	BD530	¢0.85	MPSA55	20. 35	TIP41A	£0.74
2 N3704	20.10	40362	± 0.45	BDY56	£1.60	MPSA65	20.35	TIP42A	20.90
2N3707	80.10	BC107	E0.10	BF257	¢0.40	MPSA66	¢0.40	IN914	¢0.07
2N3711	c0. 09	BC108	£0.10	BF259	£0.47	MPSU05	80. 60	IN916	10.07
2 N 3819	£0. 23	BC109	20.10	BFR39	¢0.25	MPSU55	£0.70	IS920	20.10
2N3904	¢0.17	BC125	¢0.15	BFR79	£0. 25	SN72721P	¢0.58	58.05	£1.20
2N3906	£0. 20	BC126	c0.15	BFY50	¢0.20	SN72748P	¢0.58		
2N4058	¢0. 12	8C182K	c0.10	BFY51	¢0. 20	fiP29A	¢0.50		
2N4062	£0.11	BC212K	¢0.12	BFY52	¢0. 20	TIP30A	£0.60		

for further information please write for FREE LIST NOW!

Pack		Price
1	Set of all low noise resistors	¢0.80
2	Set of all small capacitors	£1.50
3	Set of 4 power supply capacitors	£1.40
4	Set of miscellaneous parts including DIN sockets, fuses, fuse holders, control knobs, etc.	£1.90
5	Set of slide and push-button switches	£0.90
6	Set of potentiometers and selector switch	f1.45
7	Set of all semiconductors	£8.25
8	Special Toroidal Transformer	£4.95
9	Fibreglass PC Panel	¢2.50
10	Complete chassis work, hardware and brackets	£4.20
11	Preformed cable/leads	£0.40
12	Handbook	¢. 0.25
13	Teak Cabinet	£2.75

V.A.T. Please add 8\%*

 to all U.K. orders[^11]POWERTRAN ELECTRONICS PORTWAY INDUSTRIAL ESTATE ANDOVER, HANTS SP10 3NN

The largest selection

BRAND NEW FULLY GUARANTEED DEVICES

-the lowest prices!

74 Series T.T.L. I.C'S
hi-pak stind lowrey in price foll aprolitoanton GUARAMFIEED. ALH FAMOUS HAKUPACTUBERS

H
$\xrightarrow{25} \begin{array}{ll}25 & 100+ \\ 21-10 & 21.00 \\ 21.90 & 41.75 \\ 31.15 & 21.10\end{array}$

NOW WE GIVE YOU 50w PEAK (25w R.M.S.) PLUS THERMAL PROTECTIONI The NEW AL60 Hi-Fi Audio Amplifier FOR ONLY £3.95

- Hax Heal Sink lemp. $80^{\circ} \mathrm{C}$.
- Prequency Berponse 20EXx
- Distortion

Suppir rolle ict50 wite

- Thermal Feedback - Latest Design Improvementa - Losd-3, 4, 8 or 16 ohms - Sienal to noive ratio 80dB Orenall sise
105 mm
.. 13 mm

Espectaily designed to a strict specification. Only the finest compo
 in this powerns.
FULLY BUILT-TESTED and GUARANTEED

* STABILISED POWER MODULE SPM80

£3.25
 15 Tatt (r.m.s.) per channel simultaneounj. This module embodies the circuit protection. With the addition of the Mains Tranaformer BmT80, che unit will provide outputs of up to 1.5 amps at 35 Colta . Slze: $63 \mathrm{~mm} \times 105 \mathrm{~mm} \times 20 \mathrm{~mm}$. These ninits enable you to build Audlo 8ystems of the highest quality at a hitherto moprainable price. Almo
Ideal for many other applications including: Disco Syitems, Pablic
Address, Intorcom Units, etc. Handbook available, 10p. TRANSFORMER BMT80 £2.15 p. \& p. $25 p$
STEREO PRE-AMPLIFIER TYPE PA100

INTEGRATED CIRCUIT PAKS

 Manufacturera "Fall Outs" which fncluapect from the maker'a very rigid speci
Pak for Contents
 Designed for use with the Aht silicon planar transititors, two of these are specially selected low nolso NPN devlees for use in the input stages.
Three awitched stereo inputs, and rumble and scratch filtera are features of the Three awitched stereo inputs, and rumble and scratch filera are features
PAloo, which aloo has a STEREO/MONO switch, volume, balonee and continuouely parlable bass and treble controls. SPECIFICATION: $\begin{array}{ll}\text { SPECIFICATION: } & \\ \text { Frequency reaponse } & 20 \mathrm{~Hz}-20 \mathrm{kHz} \pm 1 \mathrm{~dB} \\ \text { Harmonic distortion } & \text { better than } 0.10 \% \\ \text { Inputsi, Tape head } & 3.25 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega \\ & 752 \mathrm{~V} \text { into } 50 \mathrm{~K} \Omega\end{array}$ $\begin{array}{ll}\text { 2. Rydio, Tuner } & 75 \mathrm{mV} \text { into } 50 \mathrm{k} \mathrm{\Omega} \Omega \\ \text { 3. Magnetic P.U. } & 3 \mathrm{mV} \text { into } 50 \mathrm{~K} \Omega\end{array}$ All input voitnges are for an output of 250 mV . Tape and P.U. inputs equalived to RLAA curre

MK 60 AUDIO KIT

Bass control
Treble control
Treble control
Filters: Rumble (high pass) SIgnal/noise ratio
Input overload Input overload Supply
Dimensions 100 Hz 8 kHz
better than
+650 $+26 \mathrm{~dB} \quad 20 \mathrm{~mA}$ $+292 \times 82 \times 35 \mathrm{~mm}$ only $£ 13 \cdot 15$ Comprindicai $2 \times A L 60,1 \times 8$, TEAK 60 AUDIO KIT
 Comprising: Teak veneered cablnet size $16 \frac{1}{*}^{*} \times 11 \mathcal{F}^{*} \times 3 \%^{*} \times$, other parts include aluminium chassle, heate
tront panel bracket, plus back panel and appropriate aockets etc. Kit priee: 89.95 plua 30 p postage.

DUAL-IN-LINE SOCKETS

HP80 STEREO HEADPHONES, $4-16$ ohm
$i_{\text {mpedance. Frequency response }} 20$ to $20,000 \mathrm{~Hz}$
Stereo/mono switch and volume controls $\mathrm{Et.95}$
TRANSFORMERS

POWER SUPPLIES

The STEREO 20
The 'Stereo 20 ' amplifier is mounted, ready wired and
teeted on a one-piece chaesis measuring $20 \mathrm{~cm} \times$ ceted on ${ }^{2}$ one-piece chasasis measuring 20 cm .
14 om . $\times 5 \cdot 5 \mathrm{em}$. This compact wit comes. complete with ou/ofi ewitch volume control, former, Power supply and Power ampes.
former Pand Attructively printed front panel and mateching control knobs, The stereo 20 has been
designed to fit into most turntable plinths
without interfering with the mechanism or designed to fit into most turntable plinths
without interfering with the mechansm or,
aiternatively, into without interfering with the mechamism or,
alternatively, into a separate cabinet.
Output power 20 w peak. Input 1 (Cer.)

PA 12. PRE-AMPLIFIER SPECIFICATION

£435

Treble control- $\frac{12 \mathrm{~dB}}{}$ at 00 H - Input 1. Impedance 14 KHz Sens!tivity 300 mm
S. Sens!ddvity 300 mV
Input 2. Impedance
30 K ohms
Sensitivity 4 mV

ALI0/AL20/AL30	AUDIO AMPLIFIER MODULES The AL10, AL20 and AJ8 30 unlts are similar in their appearance and in their general specifloation. However, carefu] selection of the plastic power devlce has resulted in a range of output powers from 8 to 10 watts R.M.S. The versatility of their deslgn makes them ideal ior use in record players, tape recordexa, stereo amplifiers and cassette and cartridge tope players in the car and at home.	
Parameter	Conditions	Peftormanco
HARMONIC DIETORTION	Po-3 WATTS f-ikhz	0.25\%
LOAD IMPPdANCEE	-	${ }^{8-16 \Omega}$
input imprdange	${ }_{\text {f }}=1 \mathrm{KHz}$	100 ks
FREQUENCY RESPONSE \pm adB	$\mathrm{P}_{0}=2 \mathrm{WATT8}$	$60 \mathrm{~Hz}-26 \mathrm{KHz}$
SENSITIVITY for RATED O/P	Vs $=2 \mathrm{sV}$. $\mathrm{R} 1=8 \mathrm{R}$ i $=1 \mathrm{KHz}$	75 mV . RMS ${ }^{\text {c }}$
Drmensions	- -	$3^{*} \times 24^{r^{*} \times 1^{*}}$

The ubove table relates to the AIMO, AL20 and AL30 modules. The following iable The sbove table relates to the AI,10, AL20 and A
outlines the differences in their working condtilons.

Parameter	AL10	AL20	AL30
Maximum Supply Voltage	25	30	30
Power output for 2% T.H.D. $(\mathrm{RL}=\mathrm{i} \Omega \mathrm{f}=1 \mathrm{KHz}$)	3 watts RMS Min.	5 watte RMS Min.	$\begin{aligned} & 10 \text { watts } \\ & \text { RMS Min. } \end{aligned}$
prioe	£2.50	£2.85	£3-20

HART ELECTRONICS
 Audio Kit Specialists since 1961

BAILEY/日URROWS/QUILTER PRE AMP This is the tone control section of the best pre-amp kit currently available. Consider the advantages:-*First quality fibreglass *Low noise carbon film and metal film resistors throughout. *Finest quality low-noise ganged controls with matched tracks and shatts cut to length. *Well engineared layout for total stability. *Special decoupling and earthing arrangements to eliminate hum loops. Controls, switches and input sockets mount directly on the boards to TOTALLY
ELIMINATE wiring to these components. (We know of one pre-amp kit which claims Ecominate wiring to these components. (We know of one pre-amp kit which claims its
controls mount directly on the board-and so thay do, by their shaft bushes! You still have to wire them upl!)
*We incorporate the Quilter modification which is most important as it reduces distortion
and increases the bass and treble control range. and increases the bass and treble control range.
As can be seen from the photograph the tone control unit is very slim (only $1 \frac{1}{2 \prime \prime}$ "from
front to back and may therefore be used in many other applications than our gailey
metalwork which it isdesigned metalwork which it is designed to fit. METALWORK AND WOODEN CASES These have been under review for some time:
please send for latest information. please send for latest information.
F.M. TUNER This latest addition to our range is desighed to offer the best possible
perrformance allied to the ease of operation given by push buttor varicap tuning. We pervermance taken groat care to look after the constructors point of view and there are no coils to wind, no RF circuits to wise and no alignment is required, in fact the whole unit can be easily completed and working in an evening as there are only 3 transistors, one IC
and two ready built and aligned moduies comprising the active and two ready built and aligned modules comprising the active components. We have
abandoned the concept of having a tuner as large as the amplifier and this new unit has a abontal size of only $1 \frac{1}{2}$ in. $\times 4$ in. It can be mounted on the side of our Bailey amplifier
frater
metalwork thus turning metalwork thus turning it into a tuner/amplifier whilst only increasing its width by $1 \frac{1}{2}$ in. Cost of tuner chassis (no case) is $£ 22$ for mono, $£ 25.45$ for stereo.
An extanded wooden case to fit tuner and amplifier will be offered shortiy.
STUART TAPE CIRCUITS Our printed circuits and components offer the easy way to convert any suitable quality deck pinto a very high quality Stereo The The unit. Input and
output levels suit Bailey pre amp. Total cost varies but around $£ 35$ is ail you need. We can output levels suit Bailey pre amp. Total cost varies but around £ 35 is ail you need. We can
offer tape heads as well if you want new ones. All above kits have fibreglass PCB's. Prices exclude VAT but P\&P is included.
FURTHER INFORMATION ON ALL KITS FREE if you send us a 9 in. $\times 4$ in. S.A.E. REPRINTS Post free, no VAT, Builay 30W 18p.
STUART TAPE RECORDER All 3 articles under one cover 30p.
BAILEY/BURROWS/QUILTER Preamp circuits,
Alf prices exclurte VAT
Penylan Mill, Oswestry, Salop

000Phoenix Electronics (Portsmouth) Ltd.
139-141 Havant Road. Drayton, Portsmouth. Hants PO6 2AA

Full member of AFDEC-the industry's association of franchised electronic component distributors.

Our prices include VAT at the current rate-and carriage on all goods is free.
Send for our catalogue and price list-we'll mail that to you free, too.

THIS MONTH'S BARGAIN OFFER-
Professional soldering kit. 25w iron. spare tips, tool and solder, together with $10 \times \mathrm{BC} 208,2 \times$ WO2 bridges, and $2 \times$ PP3055 Plastic Power transistors.
BARGAIN PACK PEP2- $\mathbf{8 4 . 3 0}$

Please send your catalogue-free!
Name
Address

ELECTRONIC ORGAN KITS

ELVINS ELECTRONIC MUSICAL INSTRUMENTS

WW-042 FOR FURTHER DETAILS

R.S.T. VALVE MAIL ORDER CO.

VALVES

DC090 1

DF96
DK91
DK92
DK92
DK96
DL92
$\begin{array}{ll}\text { DL94 } \\ \text { DL96 } & 0 \\ \text { DM70 } \\ \text { DY86/7 }\end{array}$

1 N 21 B
1 N 23 B
1 N 23 B

${ }_{1 \times 2}^{1 \times 2}$

12 Brett Rd., Hacknev, Londion E8 1JP. Tei: 0\%-986 8455

Dept. 5.
56 , Fortis Green Road, London, $\mathrm{N} 10 \mathrm{3HN}$.
telephone: 01-883 3705

EHBOWASOMNE Electronics

SERVICE TRADING CO

VARIABLE VOLTAGE TRANSFORMERS
Carriage extra INPUT 230 v. A.C. 50/60
 OUTPUT VARIABLE $0 / 260$ v. A.C. BRAND NEW. All types. 200W (1 Amp)
$\Sigma 9.00$ 1 KVA (Max. $2 \frac{1}{2}$ Amp) . . . 810.00 2 KVA (Max. 5 Amp) \cdots. . c14. 70 3 KVA (Max. 15 Amp) $\cdots .$. 4 KVA (Max. 20 Amp) $\quad . . .872 .50$ (Max. 37.5 Amp) , E102.50 (Panel Mounting)
89.00

300 VA ISOLATING TRANSFORMER
$115 / 230-230 / 230$ volts. Screened. Primary two separate $0-115$
volts for 115 or 230 volts. Secondary two 115 volts 150 VA each for 115 or 230 volts output. Can be used in series or paraliel Honections. Fully tropicalised. Length 13.5 cm . Width 11 cm .
Height 13.5 cm . Weight 15 ib . SPECIAL OFFER PRICE Only
E5..00.

VENNER TIME SWITCH TYPE MSQP
200/250 Volt 2-ON/2-OFF every hours at any io-cast case. Tested and in good condition 4

A.C. MAINS TIMER UNIT

Based on an eléctric clock. with 25 amp .

 singla pole switch, which can be preset forany period up to 12 hrs. ahead to switch
 hrs. then switch off. An additional 60 min . audible timer is also incorporated. Ideal for Tape Recorders, Lights, Electric Blankets,
etc. Attractive satin copper finish. Size $135 \mathrm{~mm} \times 130 \mathrm{~mm} \times$ 60 mm . Price $£ 2.00$. Post 20 p . (Total inc. VAT \& Post E2.38)
UNISELECTOR SWITCHES—NEW 4 BANK 25 WAY FULL WIPER 25 ohm coil, 24 v . D.C

MINIATURE UNISELECTOR SWITCH

 2 Bank, 12 position, 24 volt D.C.operation. ful wipar, with ancillary contacts. NEW Price 22.50 Post 20 p . As above but with 5 Bank, 12 position
Price $\mathbf{5 - 5 0}$ Post 20 p . PROGRAMME TIMERS 2301240 Voli A.C. 15 RPM Motors. Each cam operaies a e/o micro anlmated displays etc. Ex equispment tested. similar 2 cam model to illustration.
82.00 post 30 p
82.50 post $30 p$
83.25 post $30 p$

VERY SPECIAL OFFER

 Miniature Roller Micro Switch. 5 amp.c/o contacts. Mtg, 8ONNELLA: NEW. Price
10 for $\$ 1.50$. Post 10p. (Min order 10.) As above without roller, 20 for $\mathbf{2 2 . 0 0}$. Post 10 p . 1 Min . order 20. 'HONEYYELL' PUSH BUTTON, PANEL MOUNTING MICRO SWITCH ASSEMBLY
Each benk comprises of ehange-over
rated tit 10 amps 240 volt A C knob 1 in. dia. Fixing hole f In. Pricet

 (Illusfrated) in
for quantifies.

COIN MECHANISM (Ex-London Transport) Unit cortaining. selector mechanism for 1 p , 2 p \& 5 p coins.
Micro switches, relays, solenoid-operated hopper. 24 volt D . Micro swiches, relays, solenoid-operated hopper 24 volt D.C.
Precision built to high standaro. Incredible VALUE at only
E2.50 Post 60 . 2.50 Post 60 p

230-250 VOLT A,C. SOLENOID

 Similar in appearance to illustration.

TELEPRINTER EQUIPMENT LIMITED
 Sales . . . Rentals . . . New . . . Refurbished . . . Installation . . .
 Maintenance . . . Overhauls . . . Spare Parts . . . Prompt Deliveries

CREED EQUIPMENT

TELETYPE CORP.

 EQUIPMENT
SIEMENS

 EQUIPMENT OTHER EQUIPMENTSPECIAL EQUIPMENT TELEPRINTERS Models 7B, 54, 75, 444 PERFORATORS 7PN, 85/86, PR75, 25 TAPE READERS $6 S 4,655,6 S 6,6 S 6 M, 92,35,71,72,74$ HIGH-SPEED TAPE WINDERS $80-0-80 \mathrm{~V}$ POWER SUPPLY UNITS, etc.
TELEPRINTERS $\mathbf{1 5}, \mathbf{1 9}, \mathbf{2 0}, \mathbf{2 8}, \mathbf{3 2}, 33,35$
all configurations PERFORATORS $14,19,28$ LPR, RECEIVE \& MONITOR GROUP CABINETS TAPE TRANSMITTERS $14,20,28$ LBXD \& LXD TRANSMIT GROUPS, etc.
TELEPRINTERS T100 and T-68 in various configurations PERFORATORS T-LOCH 12, T-LOCH 15, A, B, D \& F, etc.
KLEINSCHMIDT, OLIVETTI, LORENZ, COCQUELET, BRITISH, AMERICAN, CONTINENTAL, ARABIC and other layouts, 5-8 track.
SOLID STATE MOTOR CONTROLS, MODEM INTERFACE UNITS, TARRIFF J INTERFACE UNITS, TEST EQUIPMENT, COMPUTER INTERFACE UNITS, DEC. PDP8 and others. SILENCE COVERS AND CABINETS, TELEPRINTER TABLES, SIGNALLING RECTIFIERS AND CONVERTORS, TAPE HOLDERS.

COMMUNICATION ACCESSORIES \& EQUIPMENT LIMITED G.P.O. TYPE COMPONENTS FOR PROMPT DELIVERY

JACK PLUGS-201, 310, 316, 309, 404, 420, 609, 610, 1603 - 3201
JACK STRIPS-310, 320, 510, 520, 810
JACK SOCKETS-300,500, 800, B3 and B6 mountings, 19, 84A and 95A
PATCH PANELS \& RACKS-made to specifications
LAMPS, SWITCHBOARD NO. 2, BALLAST PO 11, LAMP STRIPS, 10 -way PO 19,20 -way PO 17, Lamp Caps, Holder No. 12
CORDS (PATCHING \& SWITCHBOARD)-made to specifications
TERMINAL BLOCKS (DISTRIBUTION) - 20 -way up to 250 -way
LOW PASS FILTERS-type 4B and PANELS, TELEGRAPH $71(15 \times 4 B)$
POLARISED TELEGRAPH RELAYS AND UNISELECTORS-various types and manufactures both P.O. and miniature
LINE TRANSFORMERS/RETARDATION COILS-type 48A, $48 \mathrm{H}, 49 \mathrm{H}, 149 \mathrm{H}, 3 / 16,3 / 216,3 / 48 \mathrm{~A}, 3 / 43 \mathrm{~A}, 48 \mathrm{~J}$, etc. FUSE \& PROTECTOR MOUNTINGS-8064 A/B 4028, H15B, H40 and individual 1/2 COILS-39A, 40A, 40E, etc.
P.O.-TYPE KEYS-1000 and PLUNGER TYPES 228, 279, etc.

EQUIPMENT RACKS AND CONSOLES-made to specifications
RELAY ADJUSTING TOOLS, TOOL BAGS FOR MECHANICS, TENSION GAUGES, ARMATURE ADJUSTERS, SPRING BENDERS ETC. VARIOUS SWITCHBOARD EQUIPMENT.

MORSE EQUIPMENT LIMITED

The GNT Range of Automatic Morse Equipment is now manufactured in the U.K. and comprises complete equipment for Morse Training Schools and for Automatic Morse Transmission. Models available include:

$$
\begin{aligned}
& \text { KEYBOARD PERFORATORS for offline tape preparation } \\
& \text { AUTOMATIC TAPE TRANSMITTERS with speeds up to } 250 \text { w.p.m. } \\
& \text { MORSEINKERS specially designed for training, producing dots and dashes on tape } \\
& \text { HEAVY DUTY MORSE KEYS } \\
& \text { UNDULATORS for automatic record and W/T signals up to } 300 \text { w.p.m. } \\
& \text { CODE CONVERTERS converting from } 5 \text {-unit tape to Morse and vice versa } \\
& \text { MORSE REPERFORATORS operating up to } 200 \text { w.p.m. } \\
& \text { TONE GENERATORS and all Students' requirements } \\
& \text { CREED, MORSE EQUIPMENT, PERFORATORS, REPERFORATORS, TRANS- } \\
& \text { MITTERS, PRINTERS, MARCONI UG6 UNDULATORS, BUZZERS, ALDIS } \\
& \text { LAMPS, etc. } \\
& \text { WW } 202 \text { FOR FURTHER DETAILs }
\end{aligned}
$$

77 AKEMAN STREET, TRING, HERTS., U.K.

Telephone: Tring 4011, STD: 0442-82 Telex 82362, Answerback: Batelcom Tring

Marshalis Everything you need is in our New Catalogue available now price 20p (100 pages of prices and data)
 A. Marshall (London) Limited Dept. WW 42 Cricklewood Broadway London NW2 3HD Telephone 01-452 0161 Telex 21492
 Call in and see us 9-5.30 Mon-Fri
 42 Cricklewood Broadway London NW2 3HD Telephone 01-452 0161 \& 85 West Regent Street Glasgow G2 2QD Telephone 041-332 4133

 9-5.00 Sat

 9-5.00 Sat
 Trade and export enquiries welcome

Popular Semiconductors

| 2N456 | 0.75 | 2N2906A | 0.21 | 2 N 4289 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2N456A | 0.75 | 2N2907 | 0.22 | 2 N4919 | 0 |

2N456
2N456A
2N457A

2N457A	1.35	2N2907A	0.24	2N4920	0
2N490	3.16	2N2926	0.11	2 N4921	0

$2 N 490$	$3-16$	$2 N 2926$	0.11	$2 N 4921$	0
2N491	3.58	$2 N 3053$	0.32	$2 N 4922$	0

2N696	$0-22$	2N3390	0.26	2N5172	2N5174
2N697	0.18	2N3391	0.23	2N5175	0
2N698	0.40	2N3391A	0.29	2N5176	0

$2 N 69_{8}$
$2 N_{699}$
$2 N 699$
$2 N 706$

$2 N 708$
$2 N 70_{8}$
$2 N 717$
$2 N>08$
$2 N>11$
$2 N>18$
$2 N>18 A$

N-N
N~
टN
$2 N 721$
$2 N{ }_{1} 14$
$2 N 9_{16}$
$2 \mathrm{NO}_{16}$
2 NO 18
$2 \mathrm{Ng} 9_{9}$
2N1302
z~N
$2 \mathrm{~N}_{13}$
$2 \mathrm{~N}_{3}$
2 N 13
$\begin{array}{ll}2 N_{130} & 0_{24} \\ 2 N_{130} & O_{24} \\ 2 N_{13} O_{7} & 0_{31}\end{array}$
$\begin{array}{ll}2 N 1306 & 0_{21} \\ 2 N 1307 & 0_{31} \\ 2 N 1308 & O_{22} \\ 2 N\end{array}$
$2 N_{1308}$
$2 N 1308$
$2 N 1671$
$2 N_{1}$
$2 N_{1}$
$2 N_{6}$
2N1671A
2N1671B
2N1671C
2N1671C
2N1711
2N1907
2N2102
$\begin{array}{ll}\text { 2N1907 } & 5.50 \\ \text { 2N2102 } & 0.50\end{array}$
$2 N_{218}$
$2 N 2147$
$2 N 2148$
$2 N 2148$
$2 N 2160$
$2 N 2162$
$2 N 2180$
$2 N 2192$
$2 N 21924$
2N2192A
2N2913
2N2193A
2N2194
$2 N 21944$
$2 N$
$\begin{array}{ll}2 \mathrm{~N}_{2} 2184 \\ 2 \mathrm{~N} 2218 \\ 2 \mathrm{~N}_{2} & 0.22 \\ 0.24\end{array}$
$\begin{array}{ll}\text { 2N2219A } & 0.24 \\ \text { 2N26 } & \\ \text { 2N22 }\end{array}$
$\begin{array}{ll}\text { 2N2220 } & 0.25 \\ \text { 2N2221 } & 0.18\end{array}$
$\begin{array}{ll}\text { 2N2221A } & 0.18 \\ 0.21\end{array}$
$\begin{array}{ll}\text { 2N2222 } & 0.20 \\ \text { 2N2222A } & 0.25 \\ \text { 2N }\end{array}$
$\begin{array}{ll}\text { 2N2222A } & 1025 \\ \text { 2N2368 } & 0.25 \\ \text { 2N2369 } & 020\end{array}$
2 N 2369
$\begin{array}{ll}\text { 2N2369A } & 0.22 \\ \text { 2N2646 } & 0.55\end{array}$
2N2647
2N2904
2N2904
2N2904A
2N2904A
$\begin{array}{ll}\text { 2N2905 } & 0.24 \\ \text { 2N2905A } & 0-26\end{array}$
$\begin{array}{ll}\text { 2N2905A } & 0.26 \\ \text { 2N2906 } & G-19\end{array}$ \(\left.\begin{array}{lc|ll|l}AD162 \& 0.45 \& BC182L \& 0.12 \& BD139

AD161 \& pr \& BC183 \& 0.12 \& BD140

AD162\end{array}\right\}\)| 1.05 | BC183L |
| :--- | :--- |
| A.12 | BDY20 |

PW TELETENNIS KIT as featured on BBC Nationwide and in the Daily Mail, 2 October, '74. Ideal game for just plugs into aerial socket. Parts list as follows:
A Resistor Pack f1.00 p\&p 20p. B Potentio-
meter Pack $£ 1.25 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$. C Capacitor Pack meter Pack $£ 1.25 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$. C Capacitor Pack £3.10 p\&p 20p. D Semiconductor Pack $£ 14.50$ p\&p 20p. E IC Sockets $£ 4.00$ p\&p 20p. F Trans-
former $£ 1.15$ p\&p 25 p . G PCB's $£ 7.50 \mathrm{p} \& \mathrm{p} 20 \mathrm{p}$. former $£ 1.15 p \& p$ 25p. G PCB's $£ 7.50 p \& p$ 20p. Kit $\mathrm{f7} .20 \mathrm{p} \& \mathrm{p}$ 20p. Special Prices - Modular
Kite Kit f7.20 p\&p 20p. Special Prices-complete
kit (excluding case) 842.00 p\&p 50p. Sections A-F incl. $£ 23.50 \mathrm{p} \& \mathrm{p} \quad 30 \mathrm{p}$. Assembly request.
P.C. Marker Pen Dalo

33PC Prica 87 g . Zeners $400 \mathrm{MW} 2.7 \mathrm{v}-43 \mathrm{v}-$
11p. iw $3.3 \mathrm{v}-120 \mathrm{v}-17 \mathrm{p}$. IC Sockats 8DIL11p. $1 \mathrm{~W} 3.3 \mathrm{v}-120 \mathrm{v}-17 \mathrm{p}$. IC Sockats BDIL-
$16 \mathrm{p} .14 \mathrm{DIL}-17 \mathrm{p} .16 \mathrm{DH}-20 \mathrm{p}$.

Lquid Crystals

- 11100 . Ex stock SAE for details af CMOS

Scorpio Car Ignition Kit

$707-72.35$ or 4 for mino.

Resistors				Tant Beads	
W	Tol	Price		Velue	
\%	5\%	1 p		.1/35	14p
t	5\%	1.19		.22/35	149
$\frac{1}{*}$	5\%	4		.47/35	14p
1	10\%	2.5p		2.2/35	14n
2	10\%	6p		4.7/35	18g
$2 \frac{1}{2}$	5\%	7 p		10/16V	18p
5	5\%	m		47/6.3V	29
10	5\%	14		100/3V	. 20p
Veroboard Copper				Plain	
		. 1	0.15	0.1	0.15
$2.5 \times 3 \frac{7}{\frac{7}{4}}$		${ }^{26 p}$	20p	-	14 p
2.5×5		${ }^{30}{ }^{\text {p }}$	$3 \mathrm{ap}^{\text {p }}$	-	140
$3 \frac{3}{4} \times 3 \frac{3}{4}$		30 p	300	-	-
$3 \frac{1}{4} \times 5$		540	35p	-	240
33 $\times 17$		f1.21	95p	76p	69\%
Pins $\times 36$		24p	24p		
$\times 200$		89p	92p		

Integrated Circuits TTL

SN7400	16p	SN7411
SN7401	16p	SN711

SN7401AN 38p
SN7402
SN7402
SN7403
SN7404
SN7404
SN7405
SN7406
SN7407
SN7408
SN7408
SN7409
SN7409
SN7410
SN7410 ${ }_{\text {S }}^{162}$
Diodes \& Rectifiers

PIV $50 \quad 100 \quad 200 \quad 400$

 Cathode Stud Onlv

 Cathode Stud Onlv}IN34A $\quad 0-10$ BA1Q2 $0-25 \quad$ BA145 $\quad 017$ BY237

$\begin{array}{llllllllllll}\text { INS16 } & 0.07 & \text { BA115 } & 0.07 & \text { BY100 } & 0.15 & \text { BYZ11 } & \text { O.32 } & \text { OA73 } & 0.10 & \text { OAS5 } & 0.07 \\ \text { AA119 } & 0-07 & \text { BA141 } & 0.17 & \text { BY126 } & 0.15 & \text { BYZ12 } & 0.30 & \text { OA } 79 & 0.07 & \text { OA200 } & 0.07\end{array}$	AA129	0.15	BA142	0.17	BY127	0.15	BYZ12	0.30	OA79	0.07	OA200	0.00
$0.17 \frac{1}{2}$	OAS	0.10	OAB1	0.05	OA202	0.10						$\begin{array}{lllllllllllll}\text { BA } 100 & 0.15 & \text { BA144 } & 0.12 & \text { BY140 } & 1.00 & \text { OA10 } & 0.20 & \text { OA85 } & 0.10 & 0.10 & \text { OA2 } 210 & 0.10 \\ 0.27 \frac{1}{2}\end{array}$

Bridge Rectifiers

Pluple	1A	2A	4A	6A
50	8.24	0.32	0.60	$0 \cdot 02$
100	0.36	0.37	0.70	0.75
200	0.30	$0 \cdot 1$	0.75	0-80
400	0.36	0.45	0.85	1.10
600	0.40	1.52	O95	1.25
8 CHz	100 V	200 V	400 V	800V
$\frac{1}{2} A$	$0 \cdot 13$	D-40	-	-
1A	$0 \cdot 45$	D. 0^{1}	0.80	-
1.2A	0.38	0.42	0.53	0.75
3A	047	0.53	$0 \cdot 10$	0.00
4 A	加枵	0.55	$0 \cdot 185$	-

Potentiometers

Linear or Log Singlo Double Rotary Pots
Rotary Switched
Sliders
Full range of capacitors stocked
See catalogue for details
Presets
Horizontal or Vertical
0.1 W iq $\quad 0.2 \mathrm{~W}$ \& $\quad 0.3 \mathrm{~W}$

Construction Kits		
${ }^{\text {AV7 }}$	Aeviel Ampa	7^{204}
MUE7	Recoliver tor above	${ }_{632}$
EW18	Electronice dices	${ }_{\text {f65 }}$
Ew20	Electronic dice + -sensor	E7/78
Mail Order VAT all prices exclusiva p\&p 20 p.		
OUR NEW GLASGOW		
HO	S NOW OP	

WirelessWorld FULLCOLOUR WALLCHART OF FREQUENCY ALLOCATIONS 80p

The wallchart shows the allocation of frequencies within the radio spectrum ranging from 3 kHz to 300 GHz and is scaled on eight logarithmic bands contriving 15 main categories of transmissions which are identified by colours. All the important spot frequencies and 'special interest' frequencies are marked. The information is taken from the ITU and has been condensed into easily read chart form. Measures $2^{\prime} 11^{\prime \prime} \times 1^{\prime} 11^{\prime \prime}$.

ORDER FORM

To: IPC Electrical-Electronic Press Ltd., General Sales Dept., Room 11. 32 Stamford Street, London SE1 9LU

Please send me copies of the Wireless Worid Wallchart of Frequency Allocations at 80p each inclusive.
I enclose remitance value f (cheque/p.o. payable to IPC Business Press Ltd.)

Name

 (please print) AddressRegistered in England No. 677128
Regd, office: Dorset House, Stamford Street,
London SE1 9LU

Electronic Brokers a Ћappy Christmas and

fABULOUS

 medr
,

 mancon
ADVANCE SQUARE WAVE GENERATOR SG21

Frequency Range $9 \mathrm{Kc} / \mathrm{s}$ to $100 \mathrm{Mc} / \mathrm{s}$, Frequency less than 1 nS Ex-Demon-
Rise time stration. New condition in manufac turer's original carton.

ALPHANUMERIC กIMIE

 TUBES B7971The Alphanumeric NIXIE tube has the ability to display all the letters of the alphabet, numerals 0 thru 9 and special characters in a single tubie.

 MAIN OUTPUT 20 mV -TV into 60 on
temination continuously veribbie.
 RISE TIME loss than 1 nS up to 50 m .
TRIGGER OUTPUT
R 60 ohm exterial ter$0.2 .0 .4,1.0 .2 .0 \mathrm{~V}$ into 60 ohm extergal ter-
mination maximum output on open cirevit 4 V mination maximurn cutputs.
Rise time nominaty $1.5 n s$.
Fitaitue nomindly $3.5 n \mathrm{~s}$.
.
 W. 7.1 lb LIED PRICE $\mathrm{fg5}$
LAST USTE OUR PRICE $£ 35 \mathrm{P} / \mathrm{P} £ 1.50$ Also available SG21A PRICES

Also available SG 2 K.
$100 \mathrm{Kc} / \mathrm{s}-30 \mathrm{Mc} / \mathrm{s}$.
 tube provides manmy unique benefilis incuricing ciPIE $\star 1700-21 \mathrm{~mA}$
\star All 0 Coperation \star Uniform, contionsur cheracters operateon \star viol teight \star Memor with simple
\star solid state drive ciricuits \star Readability in
hight ambient \star Long life with no 200 tootiamberts brightrees
\star Character height 2 tins
Price only 990
Bases for above 50 p each.

AV07 f 19.50

Fully tested and checked, guaranteed 12 months with Leads and calibration. Leads and batteries extra. Ever-ready case for above £3.50, meter to be used enables the case $£ 5$.

SPECIAL OFFER OF COLOUR T.V. AND F.M. MEASURIN G EQUIPMENT BY WANDEL AND GOLTERMANN VZM1 Measuring set for measuring phase and amplitude modula
tion distortion for Colour T.V. Sub carrier (PAL Systems) E495.00
VZM2 Measuring set for measuring phase and amplitude moduls-
tion distortion for Multichannel FM radio systems with base bands tion distortion for Multichannel FM radio systems with base bands
up to $12 \mathrm{Mc} / \mathrm{s}$. up to $12 \mathrm{Mc} / \mathrm{s}$. $=295.00$
VZM83 Generator and Receiver used to measure transmission
distortion on FM radio link systems. Superimposed signal $52 / 304 / 556 \mathrm{kHz}$.

PROGRAMME BOARDS BY SEALECTRO
These boards are basically a multi-pole multi-throw switch device consisting of a X - Y Matrix with two contact decks in the Z Plane running at 90 degrees to each other. Contact is made by either. shorting or plugging in pins. Ideal for prototype work, otc. Boards available in 2 planes. $24 \times 50 £ 29.20 \times 11 £ 15$. Pina now available at 15 p asch.

Stop Pross

TEKTRONIX 453A Listed at over £ 1300

 Special Offer this month $£ 795$.SPECIAL OFFER OF TELEPHONE CARRIER TEST EQUIPMENT An unusual offer of a system up to $15 \mathrm{Mc} / \mathrm{s}$ for the measurement
of level attenuation on telephone carrier equipment and wide of level attenuation on
band radio relay systems
band radio relay systems.
SIEMENS sweep frequency system consistin of $3 W 518$ Len SIEMENS sweep frequency system consisting of: 3W518 Level
Oscillator $10 \mathrm{Kc} / \mathrm{s}-17 \mathrm{Mc} / \mathrm{s}: 30335$ Level Selective Meter 10 Kc/s-17 Mc/s: 3W933 Swaep Attachment; 30346 Large Screen Level Tracing Receiver. Offered as a complete system as a Special Offer loss than Half-Price
£1950.00 Enquira for individual items P.O.

± 950.00

JUST ARRIVEDI! NUMERIC INDICATOR TUBES ultra-long life, high quality, $0-9$ and 2 independent decimal
points. Supply voltage 200 V D.C. Current 14 mA . Puise points. Supply voltage 200 V D.C. Current 14 mA . Puise

duration $100 \mu \mathrm{~s}$. Characture height 0.51 , overall size 1.4 . | Brand new, guarantaed. Surplus to manutacturers require |
| :--- |
| ments. Type |
| B5853st. Price $1-25$ |
| $1.00,25+90 p, 100+$ | $80 \mathrm{p} .1000+$ price on application

wish all their customers a prosperous Rew Year

LIMITED QUANTITY Made to meet the most stringent Government DC40 MHz DUAL TRACE
Solartron C.T.484 oscilloscope. 3% accuracy. Dual Trace Displays. DUAL TRACE Y AMPLFIER. Bandwidth:
D.C. -24 Mc Mans.

Rise Time: | D.C.-24 M. $50 \mathrm{mV} / \mathrm{cm}$. Input Impedance: $\mathrm{Accuracy:} \pm 5 \%$ |
| :--- |
| Sensitivity: |
| 50 |

 continuously
Sweep expansion $\times 5$. Accuracy: $\pm 3 \% \mathrm{Kc} / \mathrm{s}$. Sweep explicR. Bandwidth: D.C.- 150 cm . Input
X AMPLIFI
 INTERNAL CAL Y AMPLFIER
WIDE BAND AVALLABLE: Bandwidth: $\mathrm{Sitivity:} 50 \mathrm{mV} / \mathrm{cm}$.
Time: 8 nanosecs. Time: I mpedance: 1 M .

MULTI OUTPUT POWER SUPPLIES Ex-Computer offered at mere fraction of original manufacturer's cost.
APT 13334 Mk III
Input 200/240V. $+10 \mathrm{~V}-5 \mathrm{Amp} .-10 \mathrm{~V}-2 \mathrm{Amp} .+24 \mathrm{~V}-2 \mathrm{Amp}$.

PRICE E19.50.
 Advance DC197

GV 7.5Amp. 6V 11 Amp. 28 V 9 Amp.
PRICE £35.
BRAND NEW MINIATURISED STRIP CHART RECORDER
BY RUSTRAK Model 88

MINITRON

K.G.M. Type 3015F 7 Segment display showing figures $0-9$ plus decimal point. Character pf
9 mm height. In 16 DIL case 9 mm height. In 16 DIL case.
NEW LOW PRICE £1. 25

SENSATIONAL SOLARTRON

DIGITAL VOLTMETER 1450 6 Ranges 20 mV to 1000 V . 10 HV Sensitity20 mV Range. Accuracy $\pm 0.05 \%$ of reading $\pm 0.05 \%$ of range. Isoatao input- 60 dB sarie: 140 dB common mode rejection. 60 confitter. Tntemal Cocond. Plug in BCD or dacimal versions
fan out.
Brand new in originat PRICE maker's pecking. Fully tested $\mathrm{f150}$
and guaranteed.

and guaramtoed.

Po

6 V

 25A
10% VARIABLE VOLTAGE HIGH CURRENT HIGH STABILITY HIGH RELIABILITY
These powes supplies were designed tor contiruous aperation in computer equipment. Maratactured to highest evgineeing standard Ior liong.teran refibibility and stability. Irrdepenindent voltage and current Manuracture Transormet.

* 1\% Accuracy on all ranges * 0.5\% Long Term Stability * $1.5 \mathrm{mV}-150 \mathrm{~V}$ f.s.d. Sensitivity
Range Range
* < $20 \mu \mathrm{~V}$ Internal Noise
* 6 in. Linear Scale calibrated in volts and dB
* > 30MQ Input Resistance * Isolated or Balanced input

PRECISION A.C. MILlivOLTMETER

 VF 252 BY SOLARTRON

COSSOR

$4000 \mathrm{SOMHz}_{2}$
Trace Oscilloscope

$5 \mathrm{mV} / \mathrm{cm}$ Sensititive
to 100us/DIV. Time full delay swoop lus
0.1us/DIV to magnified. Timehv in 23 swoop range
facilities. Tinebse tacilities, Use às $\times y$. Mo. Full triggoring $x 10$
state, Limited state, Limited quy Mode. Fully soring
stration. Fully quantity of axid stration. Fully quantity of oully solid
special special offer, e349.50. Mand guaramon-
$\times 10$ probes Probes available $\mathrm{f8}, \mathbf{5 0}$. $\mathbf{5 7 . 5 0}$ £25

APPOINTMENTS VACANT

PHONE: Allan Petters on 01-261 8508 or 01-261 8423.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.
for the January issue subject to space being available.

Couldyou teach IBM Customer Engineers?

We have a number of opportunities for instructors to train our customer engineers to service and maintain data processing equipment including the latest 370 Systems and Software.

If you're an experienced or potential instructor with a background in software and/or electronics, educated to HNC, C \& G standard or perhaps you've had similar service experience - now's the chance to find out more about these secure, well paid positions, offering excellent salaries, career development prospects and i.) depth training.

If you are interested please write to: Anne Dare, IBM, United Kingdom Limited, 389 Chiswick High Road, London W4 4AL. Quoting ref: WW/92414.

Radio/Electronics Officers Does it make sense to settle for second best?

When you're thinking about your career and your family's future, it would be wise to think of Shell. Whether you're in the service now or ashore for the time being, you will already know a lot about us. Our British flag fleet of about 80 ships (with more on the way) is widely diversified, carrying many different cargoes-bitumen, luboils, crude, LNG, chemicals and black and white products. That means that you don't have to be stuck in one particular kind of tanker for long periods. You can move up and move around with equal familiarity. Our large and increasing investment in
training underwrites our determination to ensure that we will achieve our intended service periods of $4 \frac{1}{2}$ months, and underlines our confidence in the future of the Fleet. When it comes to pay, you'll find our salaries are highly competitive. You can earn between $£ 2,972$ (with general certificate and DTI radar certificate) and $£ 6,156$ (including MNTB electronics certificate). Your experience and qualifications will determine the point at which you can enter this scale. Leave too is generous-at the rate of 183 days per year served. All officers are members of the company pension scheme and
certificated officers can take their wives to sea whenever they wish, which includes two free air fares a year. If you are returning to the service after a spell ashore or already in service, we'll be pleased to tell you all about the extra benefits that Shell can offer you as a Radio/Electronics Officer in our fleet. Write or phone, reversing the charges:

Shell Tankers (UK) Limited, STP/13, (WWW/12/74) Shell Centre, London SEif PQ . Tel: or-934 4 I72 or 3968.

TV. Test Engineers \& Technicians

As one of the largest manufacturers of T.V. and audio equipment, ITT can offer excellent opportunities to experienced Test Engineers as a result of continuing expansion of the colour T.V. Test Department at their Radlett Works.

These are responsible positions involving diagnosis of faults on colour T.V. chassis; assessing performance of chassis against specifications and standards; maintaining fault records and reporting quality trends.

ONC Electronics or C \& G Final Certificate with colour endorsement is desirable coupled with several years' experience in a T.V. Test or Service Department. The ability to supervise and co-ordinate the work of a team of Test Technicians and assist in their training would be an advantage.

Test Technicians are also required to carry out testing, alignment and fault finding on chassis.

A good salary will be offered together with generous additional benefits including assistance with relocation, where appropriate.

Write with details of your experience to Mrs. J. D. Calnan, ITT Consumer Products (UK) Limited, Radlett Works, Colney Street, St.Albans, Herts, AL2 2EG.

Colour Television
ITI

Radio Operators. How to see more of your wife without losing sight of the sea.

Join the Post Office Maritime Service. We have openings for Radio Operators at several of our coastal stations. The work is just as interesting, just as rewarding as aboard ship, but you get home to see your wife and family more often. You need a United Kingdom General or First Class Certificate in Radiocommunications, or an equivalent certificate issued by a Commonwealth Administration or the lrish Republic.

Starting pay for a man of 25 or over is $£ 2,270$, plus cost of living allowance with further

Customer Engineers

As one of the largest and most successful computer manufacturers, we place particular importance on the maintenance of a high level of customer service. Our equipment is among the most advanced in the world today. Highly sophisticated hardware used by top companies and organisations in commerce, industry. science and government.

Our Customer Service organisation is, therefore, immensely important to us if we are to maintain the high standards we have set ourselves over the years, during which we have pioneered much of the advanced technology in use today throughout the industry.

We're looking for Customer Engineers to carry out, to a high professional standard, all electronic and electro-mechanical work concerned with installation, modification, refurbishing, preventive and remedial maintenance on Sperry Univac equipment in the UK.

We require men with a knowledge of electronic or mechanical
fault-finding techniques. In addition to technical competence, essential requirements are a pleasant personality and the ability to maintain a good relationship with customers. Full product training will be given.

To Engineers looking for the best in salaries, vacancies exist in most parts of the country. Conditions and fringe benefits are what you would expect when you join a company within the international Sperry Rand organisation. Future career prospects in the computer field are excellent.

For vacancies in London or the South write with full personal and career details to Personnel Manager, Ref. WW. Sperry Univac, Univac House, 160 Euston Road, London NW1. Telephone 01-387 0911. For vacancies in the Midlands and North write with full personal and career details to Personnel Manager. Ref. WW. Sperry Univac, Lynnfield House. Church Street, Altrincham. Cheshire. Telephone 061-928 7731.

Test Gear Engineers

 Consumer ElectronicsITT, one of Europe's leaders in the field of consumer electronics, has achieved an enviable reputation for the high quality of its range of audio products and monochrome and colour TV. At Hastings we can offer excellent scope to Test Gear Engineers within the Industrial Engineering Department.

Assistant
 Chief Engineer

To deputise for the Chief Engineer - Test Gear and co-ordinate the Test Gear Department in respect of appraisal of test gear requirements for new R \& D designs; design, development and manufacture of all test gear and its installation in the factory and at sub-contractors. In addition, he will be responsible for budgeting and project appropriation and all maintenance activities on test gear installations.
This position calls for an HNC and at least five years' experience in the organisation and design of complex test equipment in the consumer electronics industry.

Senior Test Gear Engineer

Reporting to the Chief Engineer-Test Gear, he will be responsible for supervising a tearn of test gear engineers engaged in installation and both routine preventative and emergency breakdown maintenance of all test equipment at Hastings and satellite locations.
Essential requirements are HNC coupled with several years' experience at senior level maintaining electronic equipment, covering audio to UHF frequencies and pulse techniques.
Attractive salaries will be offered together with a wide range of benefits including pension/sickness schemes and assistance with relocation expenses, where appropriate, to this particularly pleasant area. The Company is situated close to the sea with some of the most attractive countryside in the South East on the doorstep.
Write with details of your qualifications and experience to David Harris, Personnel Officer, . ITT Consumer Products (UK) Limited, Theaklen Drive, Hastings, Sussex.

SONY V.T.R. Service Engineers

Our expanding Video Tape Recording business creates vacancies for experienced V.T.R. Service Engineers.
Based at our Central Service Division, Ascot Road, Bedfont, near Ashford, Middlesex, successful applicants will carry out service repairs in the workshop to Video Recorders, Video Cameras and Professional Microphones. Preference will be given to those with previous V.T.R. experience, but, alternatively, we would be interested in top quality Colour TV Engineers with Tape Recorder experience.
Attractive salaries will be commensurate with experience and qualifications. Interested service engineers are invited to apply with details of past experience and current salary, or ask for an application form, to:
The Personnel Officer, SONY (U.K.) LIMITED, Pyrene House, Staines Road West, Sunbury-onThames, Middlesex. Tel: Sunbury 87644.

14218

SENIOR TELEVISION ENGINEER
 for
 OB Unit for horseracing

We need a qualified and experienced TV Engineer to take engineering charge of a travelling $O B$ Unit employed on the surveillance of horseracing. Must be familiar with broadcast standard $O B$ practice and VTRs.

Salary $£ 3,600-£ 4,200$ p.a. depending on experience plus expenses on location.

Write or telephone for application form to:

Frank Dixon,

Racecourse Technical Services Limited, 88 Bushey Road, Raynes Park SW20 0JH

Tel: 01-947 3333

ELECTRONIC ENGINEERS

Ferranti in
Edinburgh have a variety of vacancies for
Electronic Engineers involving work on avionic systems. This includes production testing and maintenance, quality and test engineering and|environmental testing.

Candidates with Services or industrial experience and knowledge of some of the following areas of technology would be particularly relevant: Digital and Analogue Techniques Microwave Engineering Servo Techniques Lasers and Optics Electronic Displays

We are particularly interested in people with the following qualifications:
O.N.C., H.N.C. City \& Guilds Telecommunications Technician Course, Intermediate or Final Certificates, or Acceptable Services equivalent.

Those recently qualified with H.N.D. (Mechanical or Electrical) but who lack industrial experience should also apply. These posts are based in Edinburgh which offers an attractive living environment with many recreational activities within easy reach.

The Company operates a contributory Pension and Life Assurance Scheme and will assist with relocation expenses where necessary and priority will be given to incoming workers for Scottish Special Housing.

Salary negotiable £ 1800 - $£ 3000$.

Apply in writing giving particulars of qualifications and experience to the STAFFAPPOINTMENTS OFFICER
FERRANTI LIMITED FERRYROAD EDINBURGH EH52XS. FERRANTI

ELECTRONIC VACANCIES

Engineers
Draughtsmen - Designers
Service and Test Engineers
Technicians - Technical Authors
Sales Engineers

Permanent or Contract

Radio Technology TELECOMMUNICATIONS OFFICER

to work in the Broadcasting Branch of the Directorate of Radio Technology. Central London which gives technical advice on the development of TV, sound and wired broadcasting systems, carries out the technical appraisal of new broadcasting stations' characteristics. prepares frequency plans and negotiates frequency assignments for broadcasting stations. It also participates in the work of the International Radio Consultative Committee and international conferences.
Candidates (aged at least 23) must have ONC in Engineering (with a pass in Electrical Engineering ' A ') or in Applied Physics, or an equivalent qualification. In addition they should normally have had at least 5 years' relevant experience.
Salary starting between $£ 2,700$ and $£ 3,230$ (according to age) and rising to $£ 3,450$. Good prospects of promotion. Non-contributory pension scheme.
For full details and an application form (to be returned by December 10. 1974), write to Civil Service Commission, Alencon Link, Basingstoke, Hants, RG21 1JB, or telephone BASINGSTOKE 29222 ext 500 (or, for 24-hour answering service, LONDON 01-839 1992). Please quote reference $T / 8796$.

Papua New Guinea

Radio Technical Officers

Applications are invited from suitably qualified and experienced personnel for the posts of Technical Officer (Radio) and Senior Technical Officer (Radio) with the Civil Aviation Agency of the Department of Transport. There are twelve positions available working on the installation and maintenance of a variety of electronic communications equipment and appointments will be made at three levels of seniority based on experience and qualifications.
Candidates should have successfully completed City and Guilds Technician Courses, Part III Full Technological Certificate or HNC, A minimum of 6 years' relevant experience is required, with at least 3 years' involvement in a field of radio work closely related to civil aviation communications.

Conditions of service
Period of engagement is for two years (renewable in most instances). General entitlements are very attractive and include a generous gratuity (approx. 25% of salary combined with attraction allowance), education allowance for dependent children attending for dependent chidren attending
school overseas, return air passages school overseas, return air passages
with personal effects and luggage with personal effects and luggage
allowance, low cost married and single accommodation, and generous leave conditions.

Pay per annum
Expressed in 8 A . Current rate of exchange $\mathrm{SA} 1.76=£ 1.00$ approx.

Level	Salary	Attraction Allowance			Gratuity
TO1	2385	4460	1910		
TO2	2625	5205	2230		
STO1	3105	5225	2230		

Please write or telephone immediately for an application form and full details of the posts. The Papua New Guinea Public Service Board Representative, 22 Garrick Street, London W.C.2. Telephone: 01-240 1780.

Papua New Guinea

T.V.

 Engineers

 Engineers for

 New Zealand

 New Zealand}

Are you dissatisfied with your present position, feeling like a change of scene? Do something about it now! Be our guest-come down under and join the Tisco Team, N.Z.'s largest service organisation.
We are in service only and our engineers are all important people, every one of our 30 managers is an ex engineer.
We are now selecting staff to sponsor under the Immigration Scheme to arrive in N.Z. mid 1975.

If you,

- Have 5 years experience, preferably some in colour.
- Single or married with 3 children or less.
write now enclosing a photograph and details of past experience to:The Technical Staff Supervisor, Tisco Ltd, Private Bag, Royal Oak, AUCKLAND, NEW ZEALAND.

CHELSEA COLIEGE

University of London

ELECTRONICS TECHNICIAN GRADE 2 B required for the construction and maintenance of equipment and apparatus and to assist in the running of Electronics Undergraduate Teaching Laboratory. Day release for approved courses. Salary scale (under review) $£ 1,752-£ 2,022$ per annum including London Allowance, plus payments under a Threshold Agreement (at present approximately $£ 146$ per annum). $37 \frac{1}{2}$ hour week, generous holidays. Application forms and further details from Mr. M. E. Cane (2B. ET) Chelsea College WW, Pulton Place, Fulham, London SW6 5PR.
[4230

ANGLIAN WATER AUTHORITY Lincolnshire River Division ELECTRONIC INSTRUMENT TECHNICIAN

Grade 77 ($£ 2,715-£ 3,018$)

Plus Threthold Paymerits
Applicants should have a recognised qualification in electronic engineering preferably registered as a Technical Engineer and have obtained experience in workshop techniques, servicing and design practice. Experience in experimental work and a knowledge of measuring techniques would be an advantage.
Local Government Conditions of Service apply. Removal expenses and lodging allowance in appropriate cases. Application forms from the under signed to be returned by 2nd December, 1974. 50 Wide Bargate,
D. 1. Rollett

Boston, Lines.
Divisional Manager
$[4269$

BRUSSELS

- The Technical Centre of the European Broadcasting Union is seeking an

EDITORIAL ASSISTANT

for duties entailing the processing of English editions of the E.B.U.'s technical periodicals from source material to publication.
This past with good prospects would suit a young Engineer or Technician of English mother-tongue, with experience in telecommunications-preferably broadcasting-and the ability to produce documents in faultless English from English and French material, as well as translations of technical reports and correspondence. A higher-thanaverage proficiency in the French language is evidently essential.
The starting salary will be not less than 400.000 Belgian francs per annum, depending upon age and experience. Candidates should write giving details of education and experience to:

The Director

Technical Centre of the European Broadcasting Union,
Avenue Albert Lancaster 32
B-1180 Brussels (Belgium)

LEEDS CITY COUNCIL
Department of Education

AUDIO ENGINEER

(Ref. 13/20)
T3 £2187-£2538
Plus 63.20 per week Threshold
Leeds Polytechnic Educational Technology Unit
To work with production team in the operation of the colour television studio and related recording facilities and to assist with the maintenance of equipment.
Application forms (quoting (Ref. No.) together with further details from the

ADMINISTRATION OFFICER LEEDS POLYTECHNIC CALVERLEY STREET LEEDS LS1 3HE

to whom the forms should be returned.

your practical experience into a career in Technical Sales

Our specialist sales support team provides a complete technical sales service to industrial and research laboratories. Some of our latest scientific weighing apparatus incorporates sophisticated electronic equipment and this is where your background comes in.
As long as you can understand the technical capabilities of our advanced equipment then we can train you to sell it.
The training is tough, so are our standards, that's why we are only looking for those who can be highly professional in this specialised and individual field of selling.
As well as a technical background in electronics we are looking for good organisation ability and plenty of self motivation.
In return we offer excellent opportunities to develop into management. Benefits include a Cortina 1600 Estate.
Write to your potential boss - W. Fergus Roy, Sales and Marketing Director, A. Gallenkamp \& Co. Ltd., Christopher Street, London EC2P 2ER.

Europe's largest laboratory supply house

14255

RADIO OFFICERS

Do you have PMG I, PMG II, MPT 2 years operating experience?
Possession of one of these qualifies you for consideration for a Radio Officer post with composite signals organisation.

On satisfactory completion of a 7-month specialist training course, successful applicants are paid on a scale rising to $£ 3,096$ pa; commencing salary according to age- 25 years and over $£ 2,276$ pa. During training salary also by age, 25 years and over $£ 1,724$ pa with free accommodation.

The future holds good opportunities for established status, service overseas and promotion.

Training courses commence at intervals throughout the year. Earliest possible application advised.
Applications only from British-born UK residents up to 35 years of age (40 years if exceptionally well qualified) will be considered.

Full details from:
Recruitment Officer,
Government Communications Headquarters,
Room A/1115, Priors Road, Oakley,
Telephone Cheltenham 21491 Ext 2270

TECHNICIAN-C.C.T.V. IN MEDICAL EDUCATION

This appointment would suit an ambitious person wishing to gain the wide experience offered by this research project set up to investigate the place of television in teaching medicine. The successful candidate will be expected to run a small television studio, undertake recording, editing and replay to students during teaching or examination sessions. In addition to appropriate qualifications and some working experience with television, candidates should have an interest in education and the initiative to improvise when unusual techniques are required.
Salary level: $\mathbf{£ 2 , 0 0 7 - £ 2 , 3 6 2}+$ threshold
For further details please contact Dr. P. Fleetwood-Walker, Educational Services Unit. ext. 2229.
Ref. 496/C/548.
Apply: Assistant Secretary,
University of Birmingham, P.O. Box 363, Birmingham. B15 2TT.

14220

British Medical Association TECHNICIAN

required for Electronics section concerned with medical educational television and audio tape recordings.

Starting salary up to $£ 1,600$ plus threshold payments dependent on qualifications and experience. Day release towards O.N.C. can be arranged. Duties include operation and maintenance of equipment and tape duplicating.
Further decails from I. Cooper, Department of Audio Visual Communication, BMA, Tavistock Square, London WCIH 9JP.

ROYAL HOLLOWAY COLLEGE
 (University of London) Egham Hill, Egham, Surrey.

TECHNCIANS

Experienced Electronics Technician (Grade 4) required in the Physics Department. Salary on the scale $£ 1,848$ f2,163.
Applications together with the names and addresses of two referees should be sent to the Personnel Officer as soon as possible.
[4281
Donit be MisLED.
Take advantage of prices normally applicable to high quantity industrial users of LED'S while our stocks last.
50 off mixad bay.of refjrien $\mathbf{5} 5.00$

All devices are prime Gallium phosphide emitters.
: Terms strictly CWO. Prices quoted are carriage paid.
F. R. Electronics Ltd, Wimborne, Dorset. :Tel: 020-125 2442. Telex: 41247

BBC

ENGINEERING DESIGNS DEPARTMENT

A number of posts are available in Central London for enthusiastic and forward thinking young students to train as

TECHNICIANS

in the laboratories of the BBC's Designs Department. Their work will include assisting engineering and laboratory staff in the development, construction and testing of units of sound and television broadcasting equipment.
The successful candidates will probably be aged 18-20 and have a keen interest in, and possibly some experience of, electronics. They will have some ' O ' levels-two preferably will be scientific-and they will be either recently qualified to O.N.C. or City \& Guilds Part II standard, or have recently commenced the final year of such a course. Day release to complete the course will be given. Subsequent training to I.E.E.T.E. standard is by full time BBC courses at its Engineering Training Centre.
The salary offered would depend upon experience and qualification on appointment and would be between $£ 1,872$ p.a. and $£ 2,064$ p.a. It would rise by $£ 96$ p.a. to a maximum of $£ 2,352$ p.a. Satisfactory trainees could expect to be selected within two years for more senior Laboratory Technician posts whose salaries can progress to $£ 2,697$ p.a. $£ 3,054$ p.a., or $£ 3,507$ p.a. (These figures include $£ 120$ p.a. London Weighting, which is under review.)
Request for application forms to The Engineering Recruitment Officer, BBC, Broadcasting House, London, WIA IAA, quoting reference 74.E.4092/WW and enclosing self addressed envelope at least 9 in . x 4in. Closing date for completed application forms is 14 days after publication.

COUNTY OF SOUTH GLAMORGAN DEPARTMENT OF ENVIRONMENT AND PLANNING
 Senior Assistant ENGINEER

SO/PO(1) £3201-£3729 p.a.

Plus Threshold Payment
This senior post is in the County Surveyor's Division and applicants will be required to assist in the design of an Area Traffic Control Scheme for the City. Applicants should preferably be familiar with computer systems, data transmission and closed circuit television, and must hold an appropriate qualification in this field in accordance with the National Scheme.
A contribution of up to $£ 500$ toward removal and associated expenses will be considered in appropriate cases.
Application forms are obtainable from: The Personnel and Management Services Officer, Floor 9, County H.Q., Newport Road, Cardiff. (0222 499022). Closing date 2nd December, 1974 and applicants should quote reference S212.

14221

FOREIGN AND COMMONWEALTH OFFICE COMMUNICATIONS DIVISION

Has a continuing commitment for

BROADCAST RELAY ENGINEERS

To serve a one year (unaccompanied) tour of duty on the island of Masirah (off the coast of Oman). Applications are invited from engineers with experience of the operation and maintenance of highpowered radio transmitters, and who hold a third year City and Guilds Certificate in Telecommunications or its equivalent.
SALARY: $£ 6,563$ per annum, plus a tax free allowance of $£ 480$ per annum for a single officer, or $£ 985$ per annum for a married unaccompanied officer.

Free furnished accommodation and passages are available.
For an application form and further details, please write to:

Recruitment Section
Foreign and Commonwealth Office
Hanslope Park, Hanslope
Milton Keynes MK19 7BH

[4215

CHIEF ENGINEER

The North West State of Nigeria requires a chief engineer, based in Sokoto, for a new Colour Television Service.
Candidates should have experience in the operation and maintenance of P.A.L. Colour Television Studio, Outside Broadcast, Microwave Link and VHF Transmitters equipment.

Apply in writing to:

DAVID WHITTLE ASSOCIATES
Communications, Electronics \& Television Consultants
Grays Redlynch Salisbury Wiltshire UK

VID@COM LTD

VIDEOTAPE EDITOR

Vid-Com, New Zealand's rapidly growing independent video facility require an additional VTR Editor.
Facilities include four Ampex 1200c VTRs, Mark I Editec, an EECO Time Code system, HS-100 Video Disc, Fernseh studio and hand-held cameras, a Grass Valley N1600 Vision Mixer and a self-contained mobile OB VTR unit. Present staff size26 people.
Major activities involve production of commercials and programmes for broadcast as well as various CCTV projects.
The applicant must be a fully trained skilled VTR operator/editor and experience as a technician would be helpful though not essential.
Salary is negotiable in the range of \$NZ 7,000 per annum and overtime and meal allowance will apply.
As an independent facility we are not subsidized by Government or advertising revenue and it is the end result of our production efforts that counts.
The successful applicant must be willing to offer a sense of responsibility and service to our customers as well as providing technical ability. The applicant, if qualified, will also have the opportunity to assume the position of Deputy Chief Engineer.
Enquiries should be directed to:

The General Manager,
 Vid-Com Ltd.,

P.O. Box 1409, Auckland, New Zealand.

TONGA SUPERVISING BROADCASTING TECHNICIAN

required by the Tonga Broadcasting Commission to be responsible for the operation and maintenance of the Commission's two 10 Kilowatt sound transmitters, to install and maintain studio equipment, to run a radio retail store involving technical supervision in purchasing, selling and repairing of receivers and other equipment.
Candidates, under 55 years of age, MUST have a City and Guilds Telecommunications Technician Final Certificate Course 271 or equivalent with ten years' experience in the operation of studio and transmitter equipment as well as in all aspects of a small broadcasting station with particular emphasis on sound transmitters. Salary in scale $£ 2,125$ to $£ 3,400$ pa which includes an allowance normally tax free in scale $£ 504$ to $£ 1,404$ pa and 20% Cost of Living Allowance. Gratuity 20% of Local Salary. Tour of two years.
Benefits include free passages, Government housing at moderate rental. Holiday visit passages and generous paid leave. An appointment Grant of $£ 300$ and Car Loan of $£ 600$ may be payable.
The post described is partly financed by Britain's programme of aid to the developing countries administered by the Ministry of Overseas Development. For further particulars you should apply. giving brief details of experience to

M Division, 4 Millbank, London SW1P 3JD, quoting reference number
M2K/740928/WF. M2K/740928/WF.

CHELSEA COLLEGE University of London TECHNICIAN GRADE 4

required to run Physics Second and Third Year Undergraduate Teaching Laboratory. Duties include the development, construction and maintenance of Physics teaching apparatus and a good knowledge of electronics is required.
Salary (under review) $£ 2,076$ to £2,391 including London Allowance, plus payments under a Threshold Agreement (at present E167 per annum).
Application forms and further details from Mr. M. E. Cane (4.PT), Chelsea College, WW, Pulton Place, Fulham, London SW6 5PR.

14250

FIELD SERVICE ENGINEER

required for the Electronics Department of Lithographic Printers. Good rates and prospects of promotion for the right man.

KINGPRINT LTD.
 Electronics Division,
 ORCHARD ROAD, RICHMOND, SURREY. Tel: 8761091

14265

Public Address Engineer

Experienced man with high standards required in the Public Address and Sound required in the Public Address and Sound
Recording field, capable of organising and
 operating temporary P.A. Systems covering
conferences etc. Basic knowledge of
electronics, tape editing and recording useful. electronics, tape editing and recording useful.
Smart appearance (conventional dress) essenSmart appearance (conventional dress) essen-
tial. Reliable driver-living central LondonAge 24-40. Salary negotiable-Full details to: G. HANSEN,

Griffiths Hansen (Recordings) Ltd.
12 Balderton Street,
London, W1F ITF.
Telephone 01-499 1231/2.
14225

DEVELOPMENT ENGINEER

required for an expanding company servicing the printing industry. First class rates of pay. Pension scheme and good prospects for the right man.

KINGPRINT LTD.

Electronics Division,
ORCHARD ROAD, RICHMOND,
SURREY. Tel: 8761091
$[4266$

TELEVISION ENGINEER

A vacancy occurs for an additional TV. Engineer with an expanding Rental and Retail company. Applicant will preferably have some colour experience. Large s / c flat available after trial period. Salary according to experience.

Hydes of Chertsey Ltd., 56/60 Guildford Street, Chertsey 63243

£2,000-£2,500
 p.a. BASIC to

REPAIR ENGINEER
ACCORDING TO ABILITY
for servicing audio and photographic (electronic flash) equipment, etc.

AXCO INSTRUMENTS LTD.
(Tel: 01-346 8302)
228, Regents Park Road, Finchley N3 3HP

INTEROFFICE TELEPHONES LIMITED

An opportunity exists to join our Sound and Time Section to maintain in London $/ \mathrm{H}$. Counties various types of Radio/Amplifiers. Some knowledge of Impulse Clock Systems and direct speech installations would be an advantage.

Please telephone for an appointment. 01-274 3214/5
01-274 5091

REQUIRED-EXPERIENCED ENGINEER

for high quality tape recorders as well as sound projection equipment. Salary negotiable.

Apply:

AV DISTRIBUTORS (London) LIMITED,
26 Park Road, London NW1 4SH Phone: 01-935 8161.

APPOINTMENTS

FLECTRONIC EXPERIENCE WANTED. Engineers, technicians or testers required to assist teams preparing electronic equipment manuals. Writing experience preferable but not essential. LnterestIng wox Publications, 37, Alexandra Street Counties. PEDIFON TELECOMMUNICATIONS LTD K. London, SW18, have a vacancy for an en thusiastic, practical man with some experience of Volume Production Testing in the electronics industry. Phone: 01-874 7281 and ask for Len Porter

SITUATIONS VACANT

HI-FI AUDIO ENGINEERS. We require experienced Junior and Seniors and will pay top rates to get them. Tell us about your abilities. 01-437 4607. $T V$ FILM Dubbing Theatre requires experienced 1 engineer, professional sound recording techniques. Write stating experience and salary expectations. Box No. W.W. 4226.
WANT A PAID HOBBY? We are a London operators. Telephone $01-2475594$ or 8749 for morse

\author{

- ARTICLES FOR SALE
}

A ARVAK ELECTRONICS, 3-channel sound-light A converters, from £18. Strobes, £25. Rainbow Strobes, £132.-98A West Green Road (Side Door), London N15 5NS. 01-800 8656 . No $4450-650 \mathrm{MHz}$ B No. $5650-1000 \mathrm{MHz} 2$ each. Coax switch type 256 6 way $50 \Omega^{\prime} \mathrm{N}^{\prime}$. Offers. Finch, 6 Cherry Tree Way, Penn, Bueks. Penn 4483 . 4247 COLOUR T.V.'s-Bush CTV25 displayed working C $£ 90+$ VAT. Large discounts for 3 -up. Non-workers available. Rediffusion wired Mono T.V.'s all screen sizes, new condition. Sumiks, 1532 Pershore RoaG, Birmingham, 30. Tel. 021-458 2208.
FOR SALE Racal 100 Mhz Universal counter timer - type 5A 550 and handbook, good working order, only 880 . Smith, "Cracknells", Hempstead, Nr . Saffron Walden, Essex. Telephone Radwinter $49 \dot{3}$ evenings or weekends.
[4264

WE SELL

CONSTRUCTION PLANS
Phonevision. Television Camera, Police Radiar Ing machine. Wireless quarter mike. Plans; $\$ 7.50$ each.

COURSES

Detective-Electr, $\$ 36.50$. Security-Electr,

OVER 750 1TEMS
Ask for Catalogue-Airmalled $\$ 0.75$ T. STRIK,

Posthox 618, Rotterdam, Holland.

Findyourplace inBritishGas

COMMUNICATIONS AND INSTRUMENTATION MAINTENANCE

Eastern Gas wish to recruit a Maintenance Technicien to be based at their Communications and Instrumentation Workshop at Hertford.
The duties, which are both varied and interesting, involve all aspects of maintenance on their Region's Integrated Communications System which incorporates the use of microwave radio, telemetry and electronic pneumatic instrumentation.
ONC or equivalent qualification plus a knowledge of one of the above is desirable but not essential for applicants with proven ability in Communications or Instrumentation.
The salary will be in the range $£ 2,025-£ 2,532$ per annum and there are excellent opportonities for promotion on merit to a salary grade rising to $£ 2,865$ per annum; in addition to these figures a weekly supplement will be paid in accordance with the pay code under the Industry's Threshold Agreement.
Considerable travelling within the Eastern Region of British Gas will be necessary and a corrent driving licence is therefore essential.
Please write with full details of age, qualifications and experience to J. M. Pinney, Recruitment Officer, Eastern Gas, Star House, Potters Bar, Herts or telephone Potters Bar 51151.

EASTERNGAS

RADIO TECHNICIANS

Are you a Radio Technician with a City \& Guilds, Intermediate Telecommunications Certificate or equivalent? If so then why not join the Home Office. There are vacancies in Central London (near Waterloo Station) but you may also be liable for employment at the Home Office Laboratory at Canons Park, Stanmore.

PAY:
Inclusive of an interim addition is $£ 1,695$ at 19 rising to $£ 2,575$ plus a cost of living supplement which is at present $£ 12.18$ a month. In addition a London Weighting Allowance of $£ 228$ which at present is subject to review.
A SECURE FUTURE with a good pension scheme, prospects of promotion and a generous leave allowance. Five day week of 41 hours.
EXPERIENCE: \quad Two years practical workshop experience of maintenance and the use of radio/electronic gear.
Then telephone or write for an application form (to be returned by 29 November, 1974) to:

Miss C. S. E. Phillips, Home Office, Whittington House, 19-30 Alfred Place, London WCIEA 7EJ.
Telephone 01-637 2355 Extn. 87.

Join the EMI Service Team at Hayes

We urgently require

Electronic Repair \& Calibration Engineers

required for the repair and calibration of a wide range of electronic instrumentation, including oscilloscopes, DVMs, pulse generators, power supplies etc.

Applicants should be aged at least 18 years and should have had at least two years background iu electronics. Further training will be given in appropriate cases.

Close Circuit Television Engineers

for the servicing and commissioning of CCTV, VTRs etc.
Applicants should be aged at least 19 years, and must have had some experience in television receiver servicing.

For both of these positions, starting salary will be up to $£ 2,300$ per annum according to age, experience and ability. $37 \frac{1}{2}$ hour week, plus paid overtime.

Don't delay, for further details telephone or write to M. Ford, OI-573 3888 Ext. 2268, EMI Service, 254 Blyth Road, Háyes, Middlesex.

BRUNEI TELEVISION ENGINEER

Posting Bandar Seri Begawan.

Engagement for three years initially.

- Gratuity 25\% of total salary drawn.

Free Family passages.

Furnished quarters at reasonable rental.

Children's education

 allowances and holiday visit passages.Interest free car loan.
There is NO INCOME TAX PAYABLE in Brunei at present.

The Brunei Television Service require a Supervisory Engineer (Transmitters) to be responsible to the Superintending Engineer for the efficient operation and maintenance of all transmitting equipment; also routine inspection and maintenance of aerials and feeders on towers 400/ 450 ft . high and to undertake the training of local staff. Candidates, preferably under 55 years of age, must hold a recognised qualification in colour television engineering, and have spent at least 5 years in a supervisory position in a PAL colour television transmitting station. Experience should include parallel operation of Band III transmitters of 5 kW and higher output towers and the installation, operation and maintenance of microwave link equipment.
Salary, according to qualifications and experience, in the scale $£ 3,166$ to $£ 5,750$ approximately.
For further particulars you should apply, giving brief details of experience, to:

crown agents

M Division, 4 Millbank, London SW1P 3JD, quoting reference number M2K/740804/WF.

Classifieds cantinued from page 105 Articles for Sale continued

PRESSURE SENSITIVE RESISTORS

 Disks Squares Strips

 Disks Squares Strips 75 p each. Min. Order $65+30 \mathrm{p}$ P\&P + VAT 75 p each. Min. Order $65+30 \mathrm{p}$ P\&P + VAT Trial Pack $-{ }^{3}$ disks, ${ }^{3}$ squares, 1 strip. $£ 5.73$ inc. P\&P and VAT, or $£ 5.25$ CWO. Trial Pack $-{ }^{3}$ disks, ${ }^{3}$ squares, 1 strip. $£ 5.73$ inc. P\&P and VAT, or $£ 5.25$ CWO. LOGIC APPLICATIONS LIMITED LOGIC APPLICATIONS LIMITED

 6 Swan Close, St. Paul's Cray, Orpington,

 6 Swan Close, St. Paul's Cray, Orpington, Kent. Tel. Orpington 30908 Kent. Tel. Orpington 30908

 14259

 14259}COLOUR, UHF and TV SPARES, Colour and UHF lists available on request, 625 TV . If unit, suitable for Hi-Fi amp or tape recording, £6.75, P/P 35p. Bush CTV25 colour, new power units complete, incl. mains 10 , Electrolytics, reotifiers, etc. $£ 2.50$ blue lat,, $£ 3.85, \mathbf{P} / \mathbf{P} 40$ p. New philips single standard convergence panels complete, incl. 16 controls, coils, P.B. switches, leads and yoke $£ 5.00, \mathbf{P} / \mathbf{P} 40$ p. New Colour Scan Coils. Mullard or Plessey plus convergence yoke and blue lateral, $f 10.00,{ }_{P} / \mathrm{P} 40$. Mullard AT1025/05 Convergence Yoke, $£ 2.50, \mathrm{P} / \mathrm{P}$ 35p. Mullard or Plessey Blue Laterals, 75 p P $/ \mathrm{P}$ $20 \mathrm{p}, \mathrm{BRC} 3000$ type Scan Coils, $£ 2.00$, P/P 40 p . 25p. Lum. Delay Lines, 50 DL1E, DL1, £1.50, P/P Quadrupler for Bush Murphy CTV 25 . EHT Colour Q8.25, P/P 35 p. EHT Colour Tripler ITT TH25/1TH suitable most sets, £2.00, P/P 25p. KB CVC1 Dual suitable most sets, $£ 2.00, \mathrm{P} / \mathrm{P} 25 \mathrm{p} . \mathrm{KB}$ CVC1 Dual
Stand. convergence panels complete incl. 22 controls, £3.75, P/P 35p. CRT Base Panel, £1.75, P/P 15p, Makers Colour surplus/salvaged Philips G8 panels part complete; Decoder, $£ 2.50$, IF inc1. 5 modules, $£ 2.25$. T. Base, $£ 1.00, \mathbf{P} / \mathbf{P} 25 \mathrm{p}$. CRT base, $75 \mathrm{p}, \mathbf{P} / \mathbf{P}$ 15 p . GEC 2040 panels, Decoder, £3.50, T. Base, $£ 1.00$. RGB and Sound, £1.00, P/P 35p. CRT Base $75 \mathrm{p}, \mathrm{P} / \mathrm{P} 20 \mathrm{p}$. B9D valve bases $10 \mathrm{p}, \mathrm{P} / \mathrm{P} 6 \mathrm{p}$. VARICAP TUNERS. UHF ELC 1043 NEW, £4.50, Philips VHF for Band 1 and $3, £ 2.85$ incl. data. Salvaged VHF and UHF Varicap toners, $£ 1.50, P / P 25 p$. UHF TUNERS NEW, Transistorised. $£ 2.85$ or incl. slow motion drive, $£ 3.85,4$ position and 6 pos . push-
button transistorised, $£ 4.95$. All tuners $\mathrm{P} / \mathrm{P} 35 \mathrm{p}$. MURPHY $600 / 700$ series complete UHF Conversion Kits incl. tuner, drive assy., 625 IF amplifier, 7 valves, accessories housed in cabinet plinth assembly, £7.50 P/P 50p. SOBELL/GEC 405/625 Dual standard switchable IF amplifier and output chassis incl. cet. E1.50 P/P 35 p . THORN 850 Dual standard time base panel, $£ 1.00 \mathrm{P} / \mathrm{P}$ 35p. PHILIPS 625 IF amplifier panel incl. cct., £1.00 P/P 30p. VHF turret tuners AT7650 incl. valves for K.B. Featherlight, Philips 19TG170, GEC 2010 , etc., $£ 2.50$. PYE miniature inA.B miniature with UHF injection suitable $£ 1.00$ A.B miniature with UHF injection suitable K.B, Baird, Ferguson,
HMV , Marconi, $£ 1.90$ P/P fireball tuners Ferguson.
Pll tuners 30 p . Mullard 110° mono scan coils, new, suitable all standard Philips, Stella, Pye, Ekco, Ferranti, Invicta, $£ 2.00$, P/P 35p. Large selection LOPTs. FOPTs available for most popular makes. PYE/LABGEAR transistd. Masthead UHF Booster, £5.75, Power Unit, £4.65 P/P 30 p or Setback battery operated UHF Booster, $£ 4.65$ P/P $30 \mathrm{p} .200+200+100$ Microfarad 350 v Electrolytic, $1.00 \mathrm{P} / \mathrm{P} 20 \mathrm{p}$. MANOR SUPPLIES, 172 WEST END LANE, LONDON, N.W. 6 (No. 28, 59, 159 Buses or ORDER: 64 GOLDERS MANOR DRIVE, LONDON. N. W. 11. Tel. $01-7948751$.

OVERNIGHT SERVICE

for Printed Circuit Prototypes Also production runs, photography, gold plating, roller-tinning etc.

Electronic a Mechanical Sub-Assembly Co. Ltd. Highfleld House, West Kingedown, Nr. Sevenoaks, Kent. Tel: West Kingsdown 2344.

CONSTRUCTION AIDS-Screws, nuts, spacers, etc, in small quantities. Aluminium panels panels etched aluminium to individual requirements. Printed circuit boards-masters, negatives and board, one-off or small numbers. Send 9p for list. Ramar Constructor Services, 29 Shelbourne Road, Stratford on Avon, Warwks. Tel. Stratford on Avon DIGITAL CLOCK CONSTRUCTORS! The price barrier is broken! AY-5-1224 clock chip plus
four $0.3^{\prime \prime}$ seven segment L.E.D. displays type 707: $£ 10.46$ seven segment L.E.D. displays type 707: 10.46 plus VAT, post frec. For the short sighted: as above, but 0.6 high dispiays type 747 :
$£ 12.66$ plus VAT. Clock chip alone is £3.66 plus VAT. Circuit diagram supplied. Details S.A.E. GREENBANK ELECTRONICS, 94 New Chester Road, Wirral, Merseyside L62 5AG.
[4232

[^12]
NEW JOBS IN STEVENAGE

Dixserve is the servicing division of Dixons Photographic, the biggest camera and hi-fi retail chain in the world. And Dixserve is looking for Audio Engineers \& Electronic Calculator Engineers to work at their Service Centre in Stevenage.

We'll give you a 5 -day week, 3 weeks annual holiday, a pension scheme, a full and comprehensive range of modern test equipment, plus stunningly beautiful offices with a subsidised restaurant and bar, a social club and rest rooms. And, of course, a very good salary scale.

Contact: Pat Rowley, Dixons Photographic Ltd., Cartwright Road, Stevenage. Tel: Stevenage 4371 (reverse the charges).
EGOUXEETIME

Workshop Engineers Audio and Colour Television

Our recently opened U.K. service centre is in Slough. The workshops are modern and lavishly equipped to undertake the servicing of our wide range of sophisticated colour T.V. and audio equipment.

Audio/Tape

Applicants must have at least a years' relevant experience with a service organisation.

Colour Television

A minimum of 2 years' colour T . experience in a workshop servicing organisation is essential.
Benefits include * 5 day week * heavily subsidised staff restaurant * 4 weeks holiday $*$ pension schemes $*$ free life assurance $*$ and a special discount scheme on all our quality products.

Write, call in or phone Mrs. A. Ward, Personnel Officer, AEG-TELEFUNKEN (U.K.) LTD., Bath Road, Slough SL1 4AW. Telephone: Slough 33311.

Classifieds continued from page 107
Articles for Sale continued
DATAPOINT V.D.U. (Keyboard + C.R.T.), Logic fault only, £200. E.M.I. "Starlight" intensifier vidicon W/scan coils $£ 100$ (or offer), Mini-Computer
boards (complete) $£ 200$. Brighton (9273) 554992 eves. LADDERS 8 ft 10 in closed- 21 ft extended, $£ 23.54$, Haldane (Wed. Home Sales Ladder Centre (WW2), Haldane (North) Halesfield (1) Telford, Shropshire.
Tel: 0952-586644.
L EON Television sound tuners, Completes your uniti- Fi system channels 21-68UHF self contained unit. Output Audio 200HV 36-50 inc. YAT. Leon

CRYSTALS

Fast delivery of prototype and production
military quality crystals. Competitive prices military quality crystals. Competitive prices
all frequencies: LF crystals a speciality. all frequencie

INTERFACE INTERNATIONAL
 29 Market Street, Crewkerne, Somerset
 29 Market Street, Crewkerne, Somerset Tel: (046031) 2578 . Telex: 46283 .

$\mathbf{N}_{2 \mathrm{~N}}^{\text {EW COMPONENTS Post }}$ Free, 8% VAT included. Carbon Film resistors ip each. Siemens B32540 250 V Polycarbonate $0.01,0.015,0.022,0.033,0.047,4 \mathrm{p}$; $0.068,0.1 \mathrm{u}^{\mathrm{F}}, 5 \mathrm{~F}$. Triac TAG $250{ }^{40} 40 \mathrm{~V} / 8 \mathrm{~A}, 7 \mathrm{75}$. ${ }^{\mathrm{D} 32}$ diac 25 p . GRENBANK ELECTRONICS (Dept.

$\mathbf{N}^{\text {EW }}$ unused digital multimeter mains or battery accuracy ormal A/C D/C ranges. Four digits 0.1%
ranges.
Cost
E $\begin{array}{llllll}\text { accuracy over } & 25 & \text { ranges. } & \text { Cost } \\ \text { Phono after } 7.00 & \text { p.m. } & \text { 01-560 } & 1084 . & \text { accept } & \text { £72. } \\ {[4184}\end{array}$ $\mathbf{S}^{\text {UPBRB }}$ Instred from heavy Cases by duty P.V.C. . Bazelli, manufacdreds of Radio, Electronic, and Hi-Fi enthusiasts are choosing the case they require from our range of over 200 models. generous trade discount, prompt
despatch,
free literature,
Bazelli

NELSON-JONES tuner built from Integrex Kit. Push button varicap tuning, Portus and Haywood decoder. Performs to specification. I. G. Bowman, TEKTRONIX 545 A Scope D.C. to 30 MHz . Type TEKTRONIX 545 A Scope D.C. to 30 MHz . Type good condition, recently factory serviced. Manuals for both. X10 voltage probe. Offers please. Box No. WW 4252.

EXPRESS

Prototype Printed Circuits
Fastest in London Area
Also medium production runs, call-offs, etc. Electronic \& Mechanical
Sub-Assembly Co. Ltd.
Highfield House, West Kingsdown,
Nr. Sevenoaks, Kent.
Tel: West Kingsdown 2344
UNBEATABLE Prices BT106 Branded Product £0.85 exclusive of VAT. CWO plus p.p. 10p.

Pace Electronics Limited. 138 Glebe Road, Deans| Pace Electronics Limited. MK19 6NB. Road, Deals. |
| :--- |
| hanger, Milton Keynes MK |
| 19208 | VACUUM is our speciality. New and second-hand rotary pumps, diffusion outfits, accessories, coaters, etc, Silhcone rubber or varnish outgassing

equipment from f. 40 . V. N. Barrett (Sases) Ltd. 1 Mayo Road, Croydon. 01-684 9917.

ENAMELLED COPPER WIRE

24^{V} BATTERY CHARGERS. Basic 6 amp 12 amp Charger for charging two battery $£ 48$. 12 amp Charger for charging two battery banks
simultaneously with independent automatic
trickie charge, $£ 62$. Prices + VAT + Del. Send for leafiet or send cheque or PO to Lark Electronics Ltd., 33 Western Road, Lymington, Hants. Tel. Lym 3822 or 5806 .
$[4142$
Radio
60 KHz MSF Rugby and 75 KHz Neuchatel Radio compact units. Two and Audio outputs. Small, Bristol Road, Sherborne (3211), Dorset. I21

BUILDING or PURCHASING an AUDIO MIXER

pre-amp, autofade, V.U. or audio monitor, V.E. mixer, driver or power supply etc First consult:

PARTRIDGE ELECTRONICS 21-25 Hart Road, Benfleet, Essex Established 23 years

DOUGLAS For Transformers

Comprehensive stock range \star Rapid prototype service Quantity production orders.

[^13]
ARTICLES WANTED

CASH paid for new valves, transistors, C.R.T. test equipment, tape recorders, amplifiers,
$\mathrm{Hi}-\mathrm{Fi}$ equipment, T.V. sets, large or smali Hi-Fi equipment, T.V. sets, large or small
quantities. Stan Willetts, West Bromwich. Tel: quantities. Stan Willetts, West Bromwich. Tel:
021-553 0186. RRAMPIAN or B.B.C. type Cutterheads complete WW or in parts. Any condition accceptable. Box No
QUANTITY of NKT 301 or NKT 302 Transistors WASCO ELECTR Lancs.
[4234 R ADIO TELEPHONES required, ITT type MS ELECTRONICS, Queen Street, Lancaster, Lancs,
W. ANTED, all types of communications recervers Electronies, Ltd., Ashville Old Hall, Ashville Rd., Electronics, Ltd., Ashville
London. E.11. Ley. 4986.

TOP PRICES PAID

for semiconductor and component redundant or excess inventories

P.R.S. ELECTRONICS
126 Headstone Road Harrow, Middlesex Tel: 01-965 6864

ELECTRO-TECH COMPONENTS LTD.

Are buyers of all types of electronic components and equipment. They will be pleased to view clearance stocks anywhere in Great Britain at one or two days notice
and negotiate on the spot!

ELECTRO-TECH
 COMPONENTS LTD.

315/317 Edgware Road, London, W. 2 Tel: 01-723 5667. 01-402 5580
$[37$
BOOKS
TV and Electronic Publications, TV repair
manuals, £3.35, as used by the experts, Stamps
for brochure due on ents Grange Farm. Wyaston. for brochure due on ents Grange Farm. Wyaston,
Ashbourne, Derby.

नTNE
 Radio Book Catalogué
 Mobiie Rasiotelephone Equipment Mandbook. Gives circuits. data and illustrations plos some valuable moditications. for amateur use for com- mercial radiotecephome equipment including. PYE and other popular makes. mercial radiote epphans equipment inclen Availeble mid-November, E4.75. p.p. 35p. Availele Mid-Novenber How to Mako 2 M and 4 M Convertors for Amateur Use. Fully comprehensive. Contsins circuits, lay-out instructional notes. 60 . po. 15 p .

 book yet wiiten about waveguides. transmission lines. caviy resonotars, Over 500 pages. Ideal for anyons interested in RAOAR and UHF. Publishad Over 500 pages. Ideal for anyong interested in RAOAR and UHF. Publishad at $£ 11.50$. Special offer $£ 4.50$, P.p. 50 p. at Bacio Book Catalogue. Send for this
 rotio books, Free. The Bargain Book
 The Bargain Book Gazetts. Contains thousands of interesting new and out of print books at bargain prices. Subjects include al types of colliecting. 1001 interests. Published regularly and sent free on request.
 GERALD MYERS (Publisher \& Bookseller),
 138 Cardigan Rd., Headingly, Leeds 6. (Callers welcome.)

CAPACITY AVAILABLE

A IRTRONICS LTD., for Coil Winding-large or plies. Suppliers to P.O. M.OD. Boards Assemples. Suppliers to P.O. M.O.D.. etc. Export SE13 7PE. Tel. 01-852 1706. BATCH Production Wiring and Assembly to B sample or drawings. Deane Electricals, 19 B Station Parade, Ealing Common, London, W.5. Tel: 01-992 8976 . ${ }^{\text {[2PACITX available to the Electronic Industry }}$ CAPACITY available to the Electronic Industry, grinding both in metals and plastics, Limited capafor lists of full plant capacity to C.B. Industrial Engineering Ltd., 1 Mackintosh Lane, E9 6AB Tel. 01-985 7057.

Classifieds continued on page 109

Lure
COMBINED PRECISION
COMPONENTS (PRESTON)LIMITED
194-200 North Road, Preston PR1 1 YP
Telephone: 55034 Telex: 677122.

The Theory and Practice of PAL Colour Television in three important Sound Colour Films

Part 1. The Colour Signal

Running time 30 mins .
Part 2. The Receiver Decoder
Running time 25 mins.

Part 3. Receiver Installation

Running time 25 mins.
For purchase or hire in 16 mm . and Philips VCR.
Send SAE for precis details.

ZAAR COLOUR VIDEO LTD.

339 CLIFTON DRIVE SOUTH, ST. ANNES-ON-SEA, LANCS FY8 1 LP TELE. (0253) 721053
Film-to-Video tape transfers specialists

AY-5-1224 Digital Clock IC, 12 or 24 hr operation, 7 segment or BCD ouputs. Drives LED, Minitron, Neon displays, simple interfacing. 16 DIL pack + circuits. IC + data $£ 4.65$. H-P $5082-77400.3^{\prime \prime}$ digits E 2.20 IC $+40.3^{\prime \prime}$ digits $£ 12.50$ IC. $40.3^{\prime \prime}$ digits, transistors and transformer $\mathbf{f 1 5 . 0 0}$.

TCA940 Audia Power Amplifisr 10W + data + circuit $£ 2.60$
TAD100 Radio IC + IF filter + circuit $\mathbf{5 1 . 6 0}$
Dil Sockets 8 pin 11p; 14 pin 12p; 16 pin 13p
Carbon film High Stability $\frac{1}{4}$ W 5\% Resistors, 10 ohm- 2 M 21 p ea, $109 \mathrm{gp}, 100 \mathrm{B0p}$ same value.
By return service. Prices include VAT. P \& P 8p (UK), overseasatcost.Allitemsnew. TI,Moterola, Mullard, SGS, etc. SAE lists, enquiries. Colisges, etc., supplied.

SILICON SEMICONDUCTDR SERVICES

41 Dunstable Road, Caddington, Luton, Beds LU1 4AL

Quality Products Made in America

Blonder-Tongue
Field Strength Meter - FSM2 Superb quality and performance. Complete line of MATV and CATV products available.

Astatic - Choose from over 60 different microphones for public address, studio, commercial sound and recording microphones. Quality sound reproduction since 1930. Complete line of Astatic cartridges, needles and arms.
Atlas Loudspeaker - complete line of public address speakers and microphone stands.
Trusonic - speaker systems to meet every indoor and outdoor requirement.
Irish Tape - premium quality tape available in cassette, 8 -track, open reel and video.
Gromes Precision - public address amplifiers
Consolidated Wire and Cable
AVA - coaxial connectors
Teleco - telephone answering instruments
Perma Power - portable PA Systems
Utah - complete line of hi-fi speakers and accessories
Automatic Garage Doors, TV Tube Brighteners, Remote Controls
Write for illustrated catalog and specifications for these products.

Morhan Exporting Corp.

270-278 Newtown Road
Plainview, N. Y. 11803
Cable Address: Morhanex, N.Y. Telex: 96-7880

QUARTZ CRYSTAL

UNITS from

- 1.0-60.g MHz
- Fast delivery
- hich stabieity
- TO DEF 5271A
STD CODE 04214

> WRITE FOR LEAFLET AT- 1 McKNIGHT CRYSTAL Co. HARDLEY INDUSTRIAL ESTATE, HYHE, SOUTHAMPTON SO4 6ZY.

SPECIAL NOTICE

TO ALL MANUFACTURERS in the
ELECTRONIC, RADIO, TELEVISION and allied trades.
Please note that we will purchase any redundant and surplus stocks which you may have available after stocktaking, or wishing to make space for more important items. We are particularly interested in large quantities of components, raw materials, etc.

BROADFIELD \& MAYCO DISPOSALS LTD.
21 Lodge Lane, N. Finchley, London, N12 8JG.

Telephone:
01-445 0749 01-445 2713 01-958 7624
SYNTHESISER SOUNDS SUPREME
BY DEWTRON-THE UP-FRONT PEOPLE You can build professional standard synth. equipment from our modules if you can read and solder! E.f. pitch-to-yoltage en enbles your creation to play its send 15 NOW for fuil saxiliarinet, guitar etc. Send Sp NOW for full catalozue. 10 years experience from - D.W. LTD.

254 Ringwood Road, Ferndown, Dorset.

EXPRESS

PRINTED CIRCUITS - ROLLER TINNING PRINTED CIRCUITS - ROLLER TINNING
GOLDPLATING - FLEXIBLE FILMS, ETC. Electronic \& Mechanical Sub-Assembly Co. Ltd Highfield House, West Kingsdown Nr. Sevenoaks, Kent
Tel: West Kingsdown 2344

SOWTER TRANSFORMERS

 FOR SOUND RECORDING AND REPRODUCING EQUIPMENT We are suppliers to many well-known companies,studios and broadcasting authorities and were estabstudios and broadcasting authorities and were estab-
lished in 1941 . Early deliveries. Competitive prices. lished in 1941 . Early deliveries. Competitive prices Large or small quantities. Let us quote.

Transformer Manufacturers and Designers 7 Dedham Place, Fore Street, ipswich IP4 IJP Telephone 047352794

COLOUR TV's

Bush CTV 25 displayed working 590 plus VAT Large discount for 3 up non-workers available. REDIFFUSION WIRED MONO TV's, all screen sizes, new condition.

SUMHKS

1532 Pershore Road, Birmingham 30 Tel: 021-453 2208

Guide to Broadcasting Stations

17th Edition

A new edition of a title which has sold more than 250,000 copies. The bulk of the book is devoted to lists of stations broadcasting in the long, medium, short and v.h.f. bands in both frequency and geographical and alphabetical order. The book also contains useful information on radio receivers, aerials and earth, propagation, signal identification and reception reports.
1973206 pp., illustrated
059200081 75p

Illustrations

in Applied Network Theory

F. E. Rogers

A hundred numerical and algebraic illustrations designed to exemplify practical circuit problems and introduce, in analysis, principles consistent with studies of synthesis that may be pursued later.
1973240 pp., illustrated
$040870425 \times$ cased $£ 5.00$ 0408704268 limp £2.50
Obtainable through any bookseller or from
Newnes-Butterworths BOROUGH GREEN, SEVENOAKS, KENT TN15 8PH TEL. BOROUGH GREEN 2247

THE ONLY
COMPREHENSIVE
RANGE OF RECORD
MAINTENANCE EQUIPMENT
IN THE WORLD!
Send P.O. 15 p (plus 4 p
postage) for 48 page booklet postage) for 48 page booklet
providing all necessary information on Record Care.

CECIL E. WATTS LIMITED Darty House
Sunbury-on-Thames, Middx.

American Made Quality Products. Prompt DeliveryExcellent Pricing

B\&K Television Analyst Model 1077 - PAL

Cuts troubleshooting time in half! Checks every stage of black-and-white and color TV receivers from antenna input to grid of CRT. Drives solid-state sweeps, all UHF channels, 8 VHF channels, 20 to 45 MHz IF, audio, video, sync outputs.

B\&K Solid State Sweep/Marker

 Generator
Model 415 - PAL

Four instruments in one - sweep generator, marker generator, marker adder and bias supply (3) plus the demodulator probe. Easy to use. Available for CCIR frequencies.

Write for complete catalog and prices.

Empire Exporters Inc.

270-278 Newtown Road
Plainview, N.Y. 11803
Cable Address: Empexinc, N.Y. Telex: 96-7880

PRECISION

POLYCARBONATE CAPACITORS

All High Bubility-Extremely Low Leakage
440 V AO ($\pm 10 \%$)

 \begin{tabular}{l|l|}50 p

69 p

68 p

68

71 p

75 p \&

80 p \&

91 p \& 1

 63V Range $\pm \underset{56 \mathrm{p}}{1 \%} \pm \underset{46 \mathrm{p}}{2 \%}$

91.22 \& $10.0 \mu \mathrm{~F}$

$15.0 \mu \mathrm{~F}$
\end{tabular} 56 p

80 p
81.30
81.64
82.00
 $\begin{array}{lllll} & 28.15 & \mathbf{8 1 . 9 0}\end{array}$ TAITALUK BEAR CAPACITORS Values avallable:
$0.1,0.2,0.47,1.0,2.2,4.7,6.8 \mu \mathrm{~F}$ at $15 \mathrm{~V} / 25 \mathrm{~V}$ or 35 V ;
 ALL at 10 e each, 10 for $95 \mathrm{p}, 50$ for 24 .

TRAMSISTORS

 $\mathrm{BC114}$

$\mathrm{BC147/8/9}$ | BC147/ | 12p | BC212/212L |
| :--- | :--- | :--- |
| BC153/7/9 | 10p | BC547/558A |
| BF194 | | | | BC147/8/9 | $10 p$ | BC547/558A | $18 p$ | AF178 | 30 p |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BC153/7/8 | $12 p$ | BF194 | $12 p$ | OC71 | 12p |
| BC182/182L | $11 p$ | BF197 | $13 p$ | $2 N 3055$ | 56 p | | 11p | BFY50 |
| :--- | :--- |
| 12 | BFY 51 |
| 120 | BFY52 | POPULAR DIODES-1N914 $6 p, 8$ for $45 \mathrm{sp}, 18$ for 00 p,

$1 N 9168 \mathrm{p}, 6$ for $45 \mathrm{p}, 14$ for $90 \mathrm{p} ; 1844 \mathrm{jp}$, 11 for 50 p,

 5 mA . Values svailable: $3 \mathrm{~V}, 3.6 \mathrm{~V}, 4.7 \mathrm{~V}, 8.1 \mathrm{~V}, 5.3 \mathrm{~V}, 6.2 \mathrm{~V}$,
$6.8 \mathrm{~V}, 7.5 \mathrm{~V}, 82 \mathrm{~V}, 9.1 \mathrm{~V}, 10 \mathrm{~V}, 11 \mathrm{~V}, 12 \mathrm{~V}, 1 \mathrm{~V}, 18 \mathrm{~V}, 15 \mathrm{~V}$, 6 for $39 \mathrm{p}, 14$ 1or 84 p . SPECKAL OFFER: 100 Zenery for
45.50 .
 $\frac{1}{W}$ at $40^{\circ} \mathrm{C}$, iW at $70^{\circ} \mathrm{C}$. E12 series only-from $2 \cdot 2 \Omega$ to
$2.2 \mathrm{M} \Omega$. AIL at 1 p each, 8 p for 10 of any one value, 70 p 2.2 MS . ALL at 1 p each, 8 p for 10 of any one value, 7 p p ${ }^{2} 100$ of any one value. SPECIAL PACK; 10 of each value $2 \cdot 2 \Omega$ to $2 \cdot 2 \mathrm{M} \Omega$ (730 reblatora) is.
 (4 for 30 p); 800 P.I.V. 11 p (4 for 42 p).
BRIDGE RECTIYICRS $-2 \frac{1}{2} \mathrm{ump}, 200 \mathrm{~V} 40 \mathrm{p} ; 350 \mathrm{~V} 45 \mathrm{p}$; 600 V 55 p .
SUBMIELATURE FERTICAL PREBETS-0.1W Only: ALL at 3 p each; $50 \Omega, 100 \Omega, 220 \Omega, 470 \Omega, 680 \Omega, 7 \mathrm{k} \Omega$
$2 \cdot 2 \mathrm{k} \Omega, 4.7 \mathrm{k} \Omega, 68 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 15 \mathrm{k} \Omega, 22 \mathrm{k} \Omega, 47 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ 1Mת.
PLEASE ADD 10D POST AND PAOKING ON ALL
ORDERS BELOW 25. ALL EXPORT ORDERS ADD ORDERS BELOW E5. AI
COST OF SEA/ATRMAIL

PLEASE ADD 8% V.A.T. TO ORDERS,
Send S.A.E. for lists of additional ex-atock items,
Wholesale price IIsta avallable to bona fide companies.
MARCO TRADING (Dept. DII)
The OId School, Edstaston, Nr. Wem, Shropshire Tel. Whixall (Shropshire) (STD 094872) 464 (Proprs,: Minicost Trading Ltd.)

TRANSFORMER LAMINATIONS enormous range in Radiometal, Mumetal and H.C.R., also "C" \& "E" cores. Case and Frame assemblies,
MULTICORE CABLE IN STOCK
CONNECTING WIRES
Large quantities of miniature potentiometers
(trim pots) 20 ohm to 25 K . Various makes.
Wholesale and Export only.

J. Black

OFFICE: 44 GREEN LANE, HENDON, NW 4 2AH Tol: 01-203 1855. 01-203 3033 STORE: LESWIN ROAD, N. 16 Tel: 01-249 2260

WE PURCHASE ALL FORMS OF ELECTRONIC EQUIPMENT AND COMPONENTS, ETC. SPOT CASH
CHILTMEAI LTD.

7, 9, 11 Arthur Road, feadinge,

 Berks.Tel: 582605

EXCLUSIVE OFFERS
NEVER BEFORE OFFERED
WORLD-WIDE RANGE
COMPLEEE TRANSPORTABLE H.F. COMMUNIOAfitted two COLLINS KWT-6 500W S.S.B. TransmitterReceivers and one COLLINS Receiver all fully tuneable
2 to $30 \mathrm{~m} / \mathrm{cs}$ digital resdout asythesised frequency control, with line amplifiers and inputs, operating position and remote control facilities and ancillary equipment. Power input 110 V or 230 Y A.O. Ful details On applicstion.
PEILCO HC-150 POINY-TO-POINT STRIP RADIO RF
RECBI RECEIVERS $2 / 30 \mathrm{~m} / \mathrm{cs}$. Ten fully tancaves 0.5 kcs with aynthesisera. Single and
on ISB, DSB, SSB with 4 aub-bands to each channel. Full details and prices on a
HIGHEST QUALITY 19* RACK MOUNTING CABINETS \& RACKS Our Helght Width Depth Rack Panel

COMPUTER HARDWARE

CARD READER 80 col. 600 e.p.m.
PRRINTER, High speed 1000 lines p.m.
TAPE READER, High speed $5 / 8$ track 800 c.p.m.
Prices on Application
PLEASE ADD V.A.t. TO ABOVE
P. HARRIS

ORGANFORD - DORSET
BOU166ER

Wilmslow Audio

THE firm for speakers!

Baker Group 25, 3, 8 or 15 ohm Baker Group 35, 3, 8 or 15 ohm Baker Deluxe, 8 or 15 ohm Baker Major, 3. 8 or 15 ohm Baker Regent. 8 or 15 ohm Baker Superb, 8 or 15 ohm Celestion PST8 (for Unilex) Celestion MH 1000 horn. 8 or 15 ohm EMI $13 \times 8.3,8$ or 15 ohm EMI $13 \times 8,150 \mathrm{~d} / \mathrm{c} 3,8$ or 15 ohm EMI $13 \times 8,450 \mathrm{t} / \mathrm{tw} 3,8$ or 15 ohm EMI $13 \times 8,350,8$ or 15 ohm EMI $13 \times 8,20$ watt bass
EMI $2 \frac{11}{4}$ " tweeter 8 ohm
EM1 $8 \times 5,10$ watt, d/c, roll/s $80 h m$ Elac59RM 109 15ohm,59RM1148ohm Elac $6 \frac{1}{2}{ }^{\prime \prime} \mathrm{d} /$ cone, roll/s 8 ohm Elac TW4 $4^{\prime \prime}$ tweeter
Fane Pop 15 watt $12^{\prime \prime}$
Fane Pop $25 / 225$ watt 12
Fane Pop $25 / 225$ watt 12
Fane Pop 40, $10^{\prime \prime} 40$ watt
Fane Pop 50 watt, $12^{\prime \prime}$
Fane Pop 55, $12^{\prime \prime} 60$ watt
Fane Pop 60 watt, $15^{\prime \prime}$
Fane Pop 100 watt, $18^{\prime \prime}$
Fane Pop 100 watt. 18
Fane Crescendo 12A or B, 8 or 15 ohm
Fane Crescendo 15,8 or 15 ohm
Fane Crescendo 18,8 or 15 ohm
Fane Crescendo 18,8 or 15 ohm
Fane 801 T $8^{\prime \prime} \mathrm{d} / \mathrm{c}$, roll/s, 8 or 15 ohm
Fane $801 \mathrm{~T} 8^{\prime \prime} \mathrm{d} / \mathrm{c}$. roll/s, 8 ohm
Goodmans 8P 8 or 15 ohm
Goodmans 12P 8 or 15 ohm
Goodmans 12P
Goodmans 12P-D 8 or 15 ohm
Goodmans Audiom 1008 or 15 ohm
Goodmans Axent 1008 ohm
Goodmans Axiom 4018 or 15 ohm
Goodmans Twinaxiom $8^{\prime \prime} 8$ or 15 ohm
Goodmans Twinaxiom $10^{\prime \prime} 8$ or 15 ohm
Kef T27
Kef T15
Kef B110
Kef B200
Kef B139
Kef B139
Kef DN8
Kef DN12
Kef DN12
Kef DN13
Richard Allan CG8T 8" ${ }^{\prime \prime} / \mathrm{c}$ roll/s
STC4001G super tweeter

TC4001G super tweeter
Wharfedale Super 10 RS/DD 8 ohm Baker Major Module each
Fane Model One each
Goodmans DIN 204 ohm each
Helme XLK25 (pair)
Helme XLK30 (pair)
Helme XLK50 (pair)
Kefkit 2 each
Kefkit 3 each
Peerless 3-15 (3 sp. system) each Richard Allan Twinkit each
Richard Allan Triple 8 each
Richard Allan Triple each
Richard Allan Super Triple each
Wharfedale Linton 2 kit (pair)
Wharfedale Glendale 3 kit (pair)
Wharfedale Dovedale 3 kit (pair)

£ 7.75
8.50

$£ 8.50$
$£ 10.75$
$£ 10.75$
$\mathbf{E 8 . 5 0}$
$£ 7.75$
$\mathbf{£ 1 4 . 5 0}$
$£ 14.50$
$£ 255$
£2.55
$\mathbf{f 1 0 . 9 5}$
£ 10.95
.$£ 2.25$
≈ 2.25
≈ 2.50
$£ 3.75$
$£ 8.25$
$£ 8.25$
$\mathbf{£ 6 . 6 0}$
£0.65
£2.50
$£ 2.80$
$+£ 3.50$
$E 3.50$
f1.21
£4.80

. $£ 6.95$

. $£ 8.50$

£11.00
£12.50
£13.00
£22.50
E 29.00
$\mathbf{E} 36.00$
$£ 36.00$
$£ 49.95$
$£ 49.95$
.$E 3.85$
.83 .85
.87 .00
$\begin{array}{r}\text { f5. } \\ \mathbf{f 5 0} \\ \hline\end{array}$
£12.95
E 15.75
812.00
£7.25 817.25
88.25
£9.00
f5.25
E6.00
E7 25
67.25
88.25 88.25

E2.00

$£ 4.95$
30

£3.30
£6.35
56.19
29.80
23.00
f 10.75
$\begin{array}{r}10.75 \\ \hline 9.90\end{array}$
19.90
59.75
$E 22.00$
814.95
$E 39.95$
239.95
$\because 24.75$
86.75
$\mathbf{8 1 5 . 0 0}$
68.95
$\mathbf{8} 8.95$
$\mathbf{1} .75$
$£ 13.75$
£19.95
ع 23.75
E 23.75
E 9.25
E19.25
534.50
ع52.50

PRICESINCLUDEVAT

Cabinets for PA and HiFi, wadding, vynair, etc.
Send stamp for free booklet "Choosing a Speaker".
FREE with orders over $£ 7$-" "HiFi loudspeaker enclosures" book.

All units guaranteed new and perfect.
Prompt despatch.
Carriage: Speakers 38p each, tweeters and crossovers 20p each, kits 75 p each (pair $£ 1.50$ \}.

WILMSLOW AUDIO
 Dept WW

Swan Works, Bank Square, Wilmslow Cheshire SK9 1HF Tel. Wilmslow 29599 (Discount HiFi, PA and Radio at 10 Swan St, Wilmslow.)

The Young Generation Relay

Flatform Relay AZ 535
1 changeover,
high dielectric strength between coil and contact
stack for reliable insulation
between signal
and heavy duty circuits.
Contact material: Silver
cadmium oxide, fine silver.
Switching
3 A
capability 240 V 50 Hz
Operating
power ca. 360 mW
Coil voltage maximum 110 V
Surface area $32.5 \times 20 \mathrm{~mm}$
Height 11 mm

Zettler UK Division

Equitable House, Lyon Rd., Harrow, Middx. HA1 2DU Tel. (01) 8636329

WW-022 FOR FURTHER DETAILS

THE TEXAN

HI QUALITY AMPLIFIER BY TEXAS
AVAILABLE IN PACK FORM RESISTORS \& CAPACITORS SWITCHES
SEMICOND \& SELECTOR TRANSFORMER P.C. BOARD
CASE
POST \& TAXEXTRA \qquad LINSLEY HOOD 75W AMP
D.C. COUPLED LOW DISTORTION
PACK 1. RES. \& CAPS
2. SEMICONDUCTORS
P.S.U.
5. RES. \& CAPS
6. RECTIFIERS
7. P.C.B. \& SUNDRIES
8. 50 W.B. \& STT TRANSFORMER 18. ITOROIDAL TRANSFORMER PRE-AMP

1. RES/CAPS
2. CONTROLS
3. SWITCHES
4. SEMICONDUCTORS POST \& V.A.T. NOT INCLUDED Article reprint $40 \mathrm{p}+$ post
Article reprint $40 \mathrm{p}+$ post.
Also available Chassis, Te
S.A.E for further information Sleeve
TELERADIO ELECTRONICS
325-7, FORE ST., LONDON N9 OPE
$01-8073719$ (Closed Thursdays)

It tivere hiderece niilt jun yotat picha nadete, of two!

Around 1780 Sarah Oliver kept the colourful Bay Horse Inn in North Shields - the haunt of sailors, labourers, thieves and gentlemen who settled to her much-loved brew, said by many to 'preserve the wind'.

Times change, but good things don't.

Now from the same building on Horse Ferry Landing, Geordie Home Brews bring you all the natural, wholesome ingredients you need to brew a strong, natural beer like the one Sarah Oliver served. And still at a ridiculous $I_{2}^{1} P$ per pint!

Sapah

 Oliver's Home BpewBY GEOROIE HOME BREWS
from your usual Geordie Stockist Enquiries to: VIKING BREWS LTD. CLIVE STREET NORTH SHIELDS

EX-COMPUTER STABIILSED POWER SUPPIIES

 RECONDITIONED, TESTED AND GUARANTEEDRipple $<10 \mathrm{mV}$. Over-voltage protection 120-130v. $50 \mathrm{c} / \mathrm{s}$ input. Stepdown transformer to sult about $£ 3$.

+ Post \& Packing £1.70
5-6v. 8A.
$£ 12$ 5-6v. 16A.
$£ 16$
5-6v. 12A.
$£ 14$
PAPST FANS $4 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \mathrm{in} .100 \mathrm{cfm}$. $240 \mathrm{v} .50 / 60 \mathrm{~Hz}, \mathbf{£ 3} \cdot 50(30 \mathrm{p})$.
PAPST FANS 6 in . dia. $\times 2 \frac{1}{2} \mathrm{in}$, deep Type $7576 £ 5.00$ (30p).
Few only 6 in . PAPST $£ 4$ (30 p)
TRANSISTORS \quad p \& $p 10 p$ BC107/8/9 BC147/8/9 BC157/8/9 all 9p BF180 25p BF182/3/40p BF184 17p BC167 13p BFW10 55p EF336 35p 7418 DIL 34p 2N3771 £ $1 \cdot 10$, 2 N 344150 p , BD131 40p ELECTROLYTICS
$30,000 \mu 25 \mathrm{v}, 68,000 \mu 16 \mathrm{v}, 15,000 \mu 30 \mathrm{v} 65 \mathrm{p}(20 \mathrm{p})$ $4000 \mu 70 \mathrm{v} ., 3,600 \mu 40 \mathrm{v} ., 4 \frac{1}{2} \times 2 \mathrm{in}$. dia. 55 p (15p) $5,000 \mu 35 v_{.}, 40 \mathrm{p}$ (12p)
EX-CDMPUTER PC PANELS $2 \times 4 \mathrm{in}$. 25 boards for $\mathrm{f1}$ (30 p).
QH Bulbs, 12v. 55w.
150 mixed HI-STABS 250 Mixed Resistors 250 Mixed Capacitors 200 SI Planar Diodes Microswitches...
\qquad 50p (7p)
\qquad 50p (8p Min, Glass Neons .
2N3055 EQUIV. . . 8 for 50p (7p) .4 for $£ 1$ (10p)
Postage and packing shown in brackets

Please add 8% VAT to TOTAL

KEYTRONICS

Mail Order only.
44 EARLS COURT ROAD, LONDON, W. 8 01-478 3499

Classifieds continned from page 109 Capacity Available continued
COMPONENT ASSEMBLY, Wiring and Test of C.C.Bs, Electronic panels and Chassis, Prototypes designed, Butch production undertaken. DAVANT ELECTRONICS; 11 Ellesmere Road,
Shrewsbury. Tel, Shrewsbury 50550 or Bomere Heath Shrewsbury, Tel. Shrewsbury 50550 or Bomere Heath
(Shrews) 682 . COMPLETE printed circuit documentation includCing artwork masters, assembly drawings, mechanical drawings, circuit diagrams, etc., prepared from your basic design detaik. Singletates supplied JT P.C. boards. Assembled prototypes supplied. J.I
Electronics. Box No. WW 4244 . CONSULT US for all Electron
CoNSULT US for all Electronic and Telecom qualified staff at very favourable rates. Quotes free Qualified staff at very favourable rates. Quotes free ENGINEER makes anything unusual. Inventors models, displays. Special tools and equipment Seymour, 30 Devonshire Drive, Stapleford, Notting ELECTRONIC and Electro-Mechanical design and E development services offering one off design or developments to production. Single circuits or com-
plete systems. D.C.A. Electronics, 19 Church Street Warwick. Tel. Warwick 44992. SMALL Batch Production, wiring assembly, to 5 sample or drawings. Specialist in printed circuit assemblies. D. \& D. Electronics, 42 Bishopsfield Harlow. Essex. Harlow 33018.
COURSES

R ADIO and Radar M.P.T, and C.G.L.I. Courses FY7 8JZ.
 BUSINESS OPPORTUNITIES

MAKE MONEY FROM YOUR HOBBY

Sell a range of nationally advertised $\mathrm{Hi}-\mathrm{Fi}$ speakers from home and make some real money fast. The range has already become wellknown and very favourable reviews have been carried out. You sell only a brand-new fully guaranteed product with full support from the manufacturer. Your mark up is 67% and maximum investment is $£ 140$. This is a direct
selling opportunity and not part of any selling opportunity
Write for full details to
ELBAR INDUSTRIES,
Dept. 6,
2 Greystones Close
Kemsing, Sevenoaks, Kent

SEMCONDUCTOR DATA HANDBOOK

by General Electric

Price $\mathbf{£ 3 . 4 0}$

ELEMENTS OF TRANSISTOR PULSE CIRCUITS by T. D. Towers. Price $\mathbf{E 3 . 7 0}$
UNDERSTANDING IC OPERATIONAL AMPLIFIERS by R. Melen. Price $£ 2.20$
RECEIVING PAL COLOUR TELEVISION by A. G. Priestley. Price $\mathbf{E 5 . 2 5}$
ELECTRONIC EQUIPMENT RELIABILITY by J. C. Cluley. Price 62.70

DIGITAL ELECTRONIC CIRCUITS AND SYSTEMS by N. M. Morris. Price $£ 2.45$
OPERATIONAL AMPLIFIERS DESIGN AND APPLICATIONS by Tobey. Price 64.20 DIGITAL LOGIC BASIC THEORY AND PRACTICE by J. H. Smith. Price 61.65
GE TRANSISTOR MANUAL. Price $\mathbf{£ 1 . 3 0}$
TRANSISTOR FUNDAMENTALS AND SERVICING by B. Larson. Price $£ 8.00$
SERVICING ELECTRONIC ORGANS by M. H. Applebaum. Price $£ 2.00$
*ALL PRICES INCLUDE POSTAGE \star

THE MOOERN BOOK CO.

SPECIALISTS IN SCIENTIFIC
\& TECHNICAL BOOKS
19-21 PRAED STREET,
LONDON, W2 INP
Phone 7234185
Closed Sat. 1 p.m.

NEW GRAM AND SOUND
 EQUIPMENT

G LASGOW HI FI, Recorders, Video, CommunicaG tions Reciever always available we buy sell and exchange for photographic equipment. Victor Morris Audio Visual Ltd,, 340 Argyle Strect, Glasgow, G.2; 31 Sauchiehall Street, Glasgow, G.1; 8/10 Glassford
Street, Glasgow, G.2. Tel: 041 -221 8958 .

[^14]
PEAK PROGRAM METERS TO BS4297

also 200 KHz version for high speed copying. Drive circuir, $35 \times 80 \mathrm{~mm}$, tor 1 mA L.H. zero mater to BBC E1477. Gold 8-way edge con supplied. Complete kit
Built and aligne \qquad $\begin{array}{ll}£ 14.00 & £ 9.50\end{array}$ Buit and aligned
ERNEST TURNER 14.00 £13.30 89.00
$\mathbf{F} 12.60$ $\mathbf{4 2 . 7 1 \times 5 6 \mathrm { mm } £ 1 0 . 9 0 : 6 4 3 . 1 0 2 \times 7 9 \mathrm { mm } £ 1 2 . 2 0 / + 4 \text { . Type }}$ Twin movement. scale $86 \times 54 \mathrm{~mm}$ f 31.00

PUBLIC ADDRESS : SOUND REINFORCEMENT loudspeakers are in the same vicinity acoustic feedback thowiround) occurs if the amplification exceeds a critical value. By
shifting the audio spectrum fed to the speakers by a few Hertz shifting the audio spectrum fed to the speakers by a few Hertz
the tendency to howling at room resonance frequencias is destroyed and an increase in gain of 688 dB is possible before the onset of feedmack. The 5 Hz shift used is imperceptible on both speech and music.
SS4491 main BOXES with overload LED, shitt/bypass switch SS4491 mains connector and housed in strong diecast boxes
finished in attractive durable blue acrylic. Jack or XLR audio con nectors.

 PHICE ${ }^{\text {E558.00 }}$ E6TER CIRCUIT BOARDS FOR WW July 1973 article SHIFTER CIRCUIT BOARDS FOR WW July 1973 article
Complete kit and board $£ 21.00$ Including ps.u.und
DESIGNER
Aoard built and aligned $£ 28.00$ mains transformer APROVED

SURREY ELECTRONICS

The Forge, Lucks Green, Cranleigh,
Surrey GU6 7BG. (STD 04866) 5997
\qquad

TAPE RECORDING ETC.	
RECORDS MADE TO ORDER DEMO DISCS VINYLITE MASTERS FOR RECORD COMPANIES	PRESSINGS

Single discs, 1-20, Mono or Stereo, delivery 4 days

VALVES WANTED

$\mathbf{W}^{\text {E b buy new valves, transistors and clean new com- }}$
ponents, large or small quantities, all details, $\begin{aligned} & \text { quotation by return.-Walton's. } \\ & \text { Wolverhampton. }\end{aligned}$

Hair Transplant
 For free brochure, clip

 this ad. and send to: Room 6 HAIR TRANSPLANT INTERNATIONAL502 Eccleshall Road, Sheffield

RECEIVERS AND AMPLIFIERS-

SURPLUS AND SECONDHAND

EDDYSTONE EC10 MK11 Transistorised batiery E operated, mint condition, cost new $£ 86$ bargain at \&55. Phone Newmarket 3871 evenings. 4256 $H_{\text {SG }}$ Rx5s, etc., AR88, CR100, BRT400, G209, Ltd., Ashille Old Hall, Ashivile Rd., London, E.11. Ley., 4986 .
$\mathrm{S}_{\text {IGNAL }}$ generators, oscilloscopes, output meters, wave voltmeters, frequency meters, multi-range Ltd, Ashville Oid Hall, Ashville Rd., London, E.11. Ley. 4986. PRESSED IN VINYLITE IN OUR OWN PLANT. Delivery 3.4 weeks. Sleeves/Labels. Finest quality NEUMANN STEREO/Mono Lathes. We cut for many Studios UK/OVERSEAS. SAE list. DEROY RECORDS
PO Box 3, Hawk Street, Carnforth, Lancs.
PO Box 3, Hawk Street, Carnforth, Lanes

IF quality, durability matter, consult Britain's oldest transfer service. Quality records from your
suitable tapes. (Excellent fund raisers for schools). Modern studio facilities with Steinway Grand.Sound News. 18 Blenheim Road, London, W4. Tel. 01-995 1661 .

TENDERS

FOR SALE BY TENDER SURPLUS RADIO \& TELEPHONE EQUIPMENT
 70 STORNO TYPE CQM 39
 6 STORNO TYPE CQM 39
 1 STORNO TYPE CQF 31
 2 STORNO TYPE CQF 31
 25 SINGLE CHANNEL TRANSCEIVERS
 253 CHANNEL TRANSCEIVERS
 3 BASE EQUIPMENT
 14 BASE EQUIPMENT
 For further details write to: The County Surveyor, Northumberland Countr Council Phoenix Street, Queen Street, Newcastle upon Tyne. NEI 3AT,
 14272

 W4.
4009 \square

(Sole

WANTED FOR SPARES THESE \& OTHERS 'SCOPES

Cash price paid
Working
Not working but complete
CD711S. 2
£20
£10

HARTLEY 13A D300 (CT316) CD5235.2
£15
£15
£20
£8
£8
£10

7-9 ARTHUR ROAD, READING, BERKS. (rear Tech. College). Tel. Reading 582605)

INIDEX TO ADVERTISERS

Appointments Vacant Advertisements appear on pages 94-109

Page	Page	
Adcola Products Ltd. 32	Gale Electronics \& Design Ltd. cover ii	Pattrick \& Kinnie
Aero Electronics Ltd. 37, 41	Gardners Transformers Ltd. 28	Phoenix Electronics (Portsmouth) Ltd. 88
Ambientaccoustics ... 34	Garrard Eng, Ltd. 31	Powertran Electronics80, 81
Anders Electronics Ltd. 3	Grampian Reproducers Ltd. 110	Pye T.M.C. Components Ltd. 55
Antex Ltd. ... 54	Greenwood Electronics 57	
Ariston Audio Ltd. 36		Quality Electronics Ltd. 39
Audio Devices .. 10.76		Quartz Crystal Co. Ltd. 111
	Harris Electronics (London) Ltd. 33, 39 Harris, \mathbf{P}.	
Barr \& Stroud 26	Hart Electronics Heath (Gloucester) Itd.	Radford Audio Lrd. ... 70
Barrie Electronics Ltd. 76	Henry's Radio Ltd. ..72, 73	Rola Celestion Ltd.
Bentley Acoustic Corp. Ltd. 91	Hi-Fi Y/Book ... 43	R.S.T. Valves Ltd.
B.L.E.T. ... 30	Hi Fidelity Designs 22	
Bi-Pak Semiconductors 82, 83		
Bi-Pre Pak Ltd 63		Salford Elec. Instruments Ltd. 55
Bias Electronics Ltd, 25		Samsons (Electronics) Ltd. 74
Black, J. .. 111	Icon Design .. 38	Semicon Indexes Ltd. 33
Britec Ltd. .. 37	I.L.P. (Electronics) Ltd. 12	Service Trading Co. 88
Broadfields \& Mayco Disposals 110	Industrial Tape Applications Ltd. 35	
Bull, J. Electrical Ltd. 69	Integtex Ltd. .. 44	Sheiton Instruments Ltd. 35
Bywood Electronics 23	I.P.C. Wall Chart 91	Shure Electronics Ltd. 596
		South Midiands Construction Litd. 110
Cambridge Learning 6	3.H. Associates Ltd. 41	Sowter, E. A., Lta. 110
Chiltmead Ltd. 28, 66, 67, 111, 114	J. J. Lloyds Insis, Ltd. 26	Sprague Electric (U.K.) Ltd. ${ }^{53}$
Chromasonic Electronics Lid. 86, 87		Special Product Distributors Ltd. ${ }^{24}$
Circards .. 47		Studio Electronics
Colomor (Electronics) Ltd. 62 Coutant Electronics Ltd.	K.F. Products Ltd. 20, 23, 25	Steatite \& Porcelain Prods. Ltd. 54
Coutant Electronics Ltd. .. 65	Keytronics Ltd, ... 113	Steatite Installations Ltd. 56
Crofton Electronics 45	Klark Teknik ... 35	Sugden, J. E., \& Co. Ltd. 39 Sumiks
C.T. Electronics Ltd. 75		Surrey Electronics ... 1113
	Lasky	
D.E.W, Ltd. .. 110	L.C.R. Components Ltd., 52	Technomatic Ltd. 41
Decon Labs. Ltd. ... 33	Linstead Electronics 24	Telcon Metais Ltd. ${ }_{\text {T }}{ }^{27}$
Dixons Technical CCTV Ltd. 21		Teleprinter Equipment Ltd. 89
		Teleradio Special Products 112
	Macfarlane, W. \& B. 76	Trampus Electronics 46
	Macinnes Labs. Ltd. 40	T.U.A.C. Ltd. ... 7
Eagle International 10	Manor Designs Ltd. 55	Turner, E. Elec. Insts. Ltd, 30
East Cornwall Components 84	Maplin Electronic Supplies 37	
Eddystone Radio Ltd. 34	Marco Trading Co, ${ }_{\text {Marconi Instruments }}$	
Electronic Brokers Litd....................................... 92 , 93	Marconi Instruments Ltd. cover inii	United-Carr SuppliesReaders Card
Electronic Mech. Sub Assembly Co. Ltd. 110	McKnight Crystal Co. 110	
Electro-Tech, Components Ltd. 80	McLlennan Eng. Ltd. 42	Valradio Ltd. 23
Electrovalue ... 71	Mills. W. 74	Viking Brews Lta. ... 112
Elektor Publications Ltd, 45	Milward, G. F. 64	Vortexion Ltd. ... 8
Elvins Electronic Musical Insts.................... 85	Modern Book Co. 113	
	Mordaunt-Short Ltd, 20	
English Electric Valve Co. Ltd. 50	Moreham Exporting 110	Watts, Cecil E., Ltd. 110
	Mullard Ltd. Multicore Solders Lita......... 4, 4, 5, 16, 17,	Waycom Ltd.
Erie Electronics 15	Multicore Solders Ltd. cover iv	Wayne, Kerr. The, Co. Ltd. 11
		West Hyde Developments Ltd, 65
		Wiikinson, L. (Croydon) Lid. 69
Feedback Ltd, .. 38 Fi-Comp Electronics		Wireless World Annual 39
Fi-Comp Electronics ... 69	Nombrex (1969) Ltd. 20	
Foulsham-Tab Ltd. ${ }^{6}$ Future Film Development Lid.		
Future Film Development Ltd. 85 Fylde Electronics Labs, Ltd.		Z. \& I. Aero Services Ltd. 25, 68
ylde Electronics Labs. Ltd. 30	O.M.B. Electronics 37	

[^15]

Spy-trapping? Smuggler-scotching? That's no work for the scores of designers in our 150-strong engineers' brigade.

They're on frontier duties just the same, though. For sometimes they're operoting on the very frontiers of human knowledge - as with our remarkable new spedrum analyser, in which they've combined the latest digital starage technology and television display with semi-automatic operation to produce a new generation instrument.

Sometimes, on the other hand, they're helping you ta economise - as when they praduce a signal generator oble to give the performance you need
without the cost of the performance you don't.
There are fimes, tao, when - as a result of free-ranging, exploratary probing - they came up with a revolutionary instrument that was not originally on the agenda ot all. An example? The $X-Y$ Memory, a definitive solution to the irritating problem of clear oscilloscope display of very low frequency waveforms.

The fact is: $\mathbf{m i}$ maintains what is Eurape's largest operation devoted exclusively to electronic test and measuring instruments. And it has the resources, the research facilities, the development potential to match.

M1: THE INNOVATORS

we made a lot of contacts on the flight deck.

Ersin Multicore 5-core solder was used for thousands of electrical connections on the British assembled Concorde. High-class connections! And Ersin Multicore quality will ensure that they stay connected. Before selection, Ersin Multicore Solders were subjected to rigorous testing against an extremely demanding international specification. They passed with (dare we say it?) flying colours. Ersin Multicore is always coming out best by test. The World's leading manufacturers of electronic equipment use Ersin Multicare Solder to ensure the utmost in reliability, efficiency and economy of soldered joints, whether they are making equipment for use in the sea, on land, in the air or in outer space. Write, on your Company's headed note paper, for technical information about Ersin Multicore Solder, Solder Chemicals and high purity EXTRUSOL for soldering machines and baths to:

Multicore Solders
Limited, Maylands Averue
Hemel HempsteadHerts HP2 TEP
Tel-H.Hempstead 3636
Telex 82363

[^0]: LEVELL ELECTRONICS LTD.
 Moxon Street, High Barnet, Herts. EN5 5SD
 Tel : 01-4495028/440 8686

[^1]: Manufacturers and distributors of Electrical Measuring Instruments. Sole U.K. distributors of FRAHM Resonant Reed Frequency Meters and Tachometers. Manufacturers of purpose built electrical and electronic equipment to customers' requirements.

[^2]: Erie Electronics Limited, South Denes, Great Yarmouth, Norfolk. Telex: 97421.

[^3]: Please uso reader enquiry sevice no. WW073 for data on all of the above trypes.

[^4]: Γ ADCOLA PRODUCTS LTD. ADCOLA HOUSE. DEP WW. GAUDEN RD. CLAPHAM SWA GLK. REG. No. 442762 VAT. No. 235-6153-72
 Please sendimmediately an R500 De-soldering instrument cheque enclosed for $£ 8.09$ plus 10 V. V.T. (postage paid U.K. only Please send further details (tick appropriate box)

 MAME
 ADORESS

[^5]: What are the important features to look for in an FM tuner kit? Naturally it must have an attractive appearance when built, but it must aiso embody the latest and best in circuit design such as :-
 MOSFET front end for excellent cross modulation pertormance and low noise. VARICAP tuning diodes In back to In back to back configuration for low distortion. INTEGRATED circuitif amplifers for reliability and excellent limiting/AM rejection.

 PHASE LOCKED Stereo decoder with Stereo mute, see below
 LED fine tuining indicators.
 PUSH BUTTON tuning (with AFC disable) over the FM band ($88-104$)
 IC STABILISED and SIC protected power supply.
 The Nelson-Jones Tuner has all of these features and many more, and more importantly the design is fully proven not just with a few prototypes but with many thousands of working tuners spread across the world.

 $$
 \text { Typ. Specn: } 20 \mathrm{~dB} \text { quieting } 0.75 \mathrm{uV} \text {. Image rejection -70 dB.I.F. Rejection }-85 \mathrm{~dB}
 $$

[^6]: *Write to us enclosing 35 p P.O. or cheque for this month's Elektor. If you like Elektor and wish to receive the next eleven issues, we offer you the subscription for the price of ten issues. £4.60 including postage.

 Elektor Publishers Ltd.
 6, Stour Street, Canterbury CT1 2XZ. Tel Canterbury (0227) 54439

[^7]: *See page 458 , November issue.

[^8]: *Refs 11-13 are in: Lord Rayleigh, Scientific

[^9]: *To quote Tom Lehrer:
 Plagiarise Plagiarise
 Remember why the good Lord made your eyes
 So don't shade your eyes
 But Plagiarise Plagiarise Plagiarise
 -only please to call it Research

[^10]: We are glad to say that it is now possible to supply from stock the following integrated circuits. ALL ARE BRANDED, FULL SPECIFICATION devices offered at

[^11]: (*or at current rate if changed)
 U.K. ORDERS-Past free (mail order only)
 OVERSEAS-Postage at cost +50 p special packing

 Dept. WW12

[^12]: HI FIDELITY MODULES made and tested. Linsley Hood Clad tested.
 $\pm 7.25^{*}$ Linsley Hood, Class A 614.00* Linsley Hood, D.C. coupled 75 W 114.00^{*} Linsley Hood, pre-amp (75W). 13.50
 68.50 Toshibs IC Ster, prea pre.............. $\{12.00$ *Excl. Heat Sinks.
 TELERADIO HIFI, 325 Fore St., London, N9 OPE. $01-807$ 3719. (Closed Thursday.)

[^13]: Douglas Electronic Industries Ltd., Eastfield Road, Louth, Lincolnshire LN11 7AL. Tel: Louth (05-07) 3643 Telex: 56260

[^14]: SERVICE AND REPAIRS
 CRATCHED TUBES. Our experienced polishing
 service can make your colour or monochrome tubes as new again for only $£ 2.75$, plus carriage $£ 1$.
 With absolute confidence send to Retube Ltd. North $\begin{array}{ll}\text { Somercote Louth, Lincs, or 'phone } 0507-85 & 300 \\ 127\end{array}$

[^15]:
 CONDITIONS OF SALE AND SUPPLY. This periodical is sold subject to the following conditions namoly that it shall not without the written consent of the publishers frst glven be lent resold, hired out or otherwiae disposed of by way of Trade at a price in excess of the recommended maximum price showa on the cover, and that it ahall not be lent, re-sold, hired out or otherwige disposed of in a mutllated condition or tn any

